Signal Processing Blockset™ 7
Getting Started Guide

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Signal Processing Blockset™ Getting Started Guide
© COPYRIGHT 2004-2010 The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010

First printing
Second printing
Online only
Online only
Online only
Online only
Online only
Third Printing
Fourth Printing
Online only
Online only
Online only
Online only

New for Version 6.0 (Release 14)
Revised for Version 6.0.1 (Release 14SP1)
Revised for Version 6.1 (Release 14SP2)
Revised for Version 6.2 (Release 14SP3)
Revised for Version 6.3 (Release 2006a)
Revised for Version 6.4 (Release 2006b)
Revised for Version 6.5 (Release 2007a)
Revised for Version 6.6 (Release 2007b)
Revised for Version 6.7 (Release 2008a)
Revised for Version 6.8 (Release 2008b)
Revised for Version 6.9 (Release 2009a)
Revised for Version 6.10 (Release 2009b)
Revised for Version 7.0 (Release 2010a)

Introduction

1

Product Overviewcciiiiiiiinennnnn.. 1-2
System Setupovii e 1-3
Installation00 1-3
Required Products 1-3
Related Products 1-4
ProductDemos i, 1-5
Demos in the Help Browser 1-5
DemosontheWeb 1-10
Demos on MATLAB Central 1-11
Working with the Documentation 1-12
Viewing the Documentation 1-12
Printing the Documentation 1-13
Using ThisGuide ..., 1-13

Concepts, Terminology, and Feature Overview

2|

Sample Model and Block Libraries 2-2
Modeling System Behavior 2-2
Signal Processing Blockset Blocks 2-5

Key Blockset Conceptscoiiiiiiinnnn... 2-10
S1gnals ... e 2-10
Sample Time i, 2-10
State oo e e e 2-11
Sample-Based Signals 2-11

Frame-Based Signals, 2-12

Tunable Parameters 2-14

Signal Processing Blockset Product Features 2-16
Frame-Based Operationsccouuuiieeeno... 2-16
Multirate Processing 2-17
Fixed-Point Support, 2-17
Real-Time Code Generationccuuuiunnn. 2-18
Adaptive and Multirate Filtering 2-18
Quantization i e 2-18
Statistical Operationscoiiiiineeneennnnn. 2-19
Linear Algebra0 2-19
Parametric Estimation 2-19
Matrix Support e 2-20
Data Type Supportcoiiiiiiie .. 2-20

Configuring the Simulink Environment for Signal

ProcessingModels 2-23
Using dspstartup.mc0iuiiiiieennnnnn. 2-23
Settings in dspstartup.m0iiiiii.. 2-24

Signal Processing Models

3

Creating a Block Diagram 3-2
Setting the Model Parameters 3-6
Running the Model 3-9
Modifying Your Model 3-12

Filters
Digital Filters 4-2

vi Contents

Designing a Digital Filter 4-2

Adding a Digital Filter to Your Model 4-6
Adaptive Filters 4-9
Designing an Adaptive Filter 4-9
Adding the Adaptive Filter to Your Model 4-14
Viewing the Coefficients of Your Adaptive Filter 4-19

Code Generation

5

Understanding Code Generation 5-2
Code Generation with the Real-Time Workshop Product .. 5-2
Highly Optimized Generated ANSIC Code 5-3

Generating Code 5-4
Setting Up the Build Folder 5-4
Setting Configuration Parameters 5-5
Generating Codei ... 5-10
Viewing the Generated Code 5-11

Frequency Domain Signals

6

Power Spectrum Estimates 6-2
Creating the Block Diagram 6-2
Setting the Model Parameters 6-3
Viewing the Power Spectrum Estimates 6-9

Spectrograms e 6-12
Modifying the Block Diagram 6-12
Setting the Model Parameters 6-14
Viewing the Spectrogram of the Speech Signal 6-18

vii

Index

viii Contents

Introduction

¢ “Product Overview” on page 1-2
® “System Setup” on page 1-3
¢ “Product Demos” on page 1-5

¢ “Working with the Documentation” on page 1-12

Introduction

1-2

Product Overview

Signal Processing Blockset™ provides algorithms and tools for the design and
simulation of signal processing systems. You can develop DSP algorithms

for speech and audio processing, signal detection, radar tracking, baseband
communications, and other applications. Most algorithms and tools are
available as both System objects (for use in MATLAB®) and blocks (for use in
Simulink®).

The blockset provides techniques for FFTs, FIR and IIR digital filtering,
spectral estimation, statistical and linear algebra computations, streaming,
and multirate processing. It also includes signal generators, interactive
scopes, spectrum analyzers, and other tools for visualizing signals and
simulation results.

You can use the blockset to develop and validate real-time signal processing
systems. For embedded system design and rapid prototyping, the blockset
supports fixed-point arithmetic, C-code generation, and implementation on
embedded hardware.

System Setup

System Setup

In this section...

“Installation” on page 1-3

“Required Products” on page 1-3

“Related Products” on page 1-4

Installation
Before you begin working, you need to install the product on your computer.

Installing the Signal Processing Blockset Software

The Signal Processing Blockset software follows the same installation
procedure as the MATLAB toolboxes. See the MATLAB installation
documentation for your platform.

Installing Online Documentation
Installing the documentation is part of the installation process:

¢ Installation from a DVD — Start the MathWorks™ installer. When
prompted, select the Product check boxes for the products you want to
install. The documentation is installed along with the products.

¢ Installation from a Web download — If you update the Signal Processing
Blockset software using a Web download and you want to view the
documentation with the MATLAB Help browser, you must install the
documentation on your hard drive.

Download the files from the Web. Then, start the installer, and select
the Product check boxes for the products you want to install. The
documentation is installed along with the products.

Required Products

The Signal Processing Blockset product is part of a family of products from The
MathWorks™. You need to install the following products to use the blockset:

1-3

../../../base/install/install_product_page.html
../../../base/install/install_product_page.html

Introduction

MATLAB — You use MATLAB to open model files and view Signal
Processing Blockset demos. You can import signal values from the
MATLAB workspace into signal processing models and export signal values
from signal processing models to the MATLAB workspace.

Simulink — Simulink provides an environment that enables you to create a
block diagram to model your physical system. You can create these block
diagrams by connecting blocks and using graphical user interfaces (GUISs)
to edit block parameters.

Signal Processing Toolbox™ — The Signal Processing Toolbox product
provides basic filter capabilities. You can design and implement filters
using the Filter Design and Analysis Tool (FDATool) and use them in your
signal processing models.

Related Products

The MathWorks provides several products that are relevant to the kinds of
tasks you can perform with Signal Processing Blockset software.

For more information about any of these products, see either

® The online documentation for that product if it is installed on your system

e The MathWorks Web site, at

http://www.mathworks.com/products/sigprocblockset/related. jsp

http://www.mathworks.com/products/sigprocblockset/related.jsp

Product Demos

Product Demos

In this section...

“Demos in the Help Browser” on page 1-5
“Demos on the Web” on page 1-10
“Demos on MATLAB Central” on page 1-11

Demos in the Help Browser

You can find interactive Signal Processing Blockset demos in the MATLAB
Help browser. This example shows you how to locate and open some typical
demos:

1 To open the Help browser, type doc at the MATLAB command line.

2 Expand the Signal Processing Blockset node in the Help browser, then
the Demos node.

1-5

1 Introduction

File Edit Yiew Go Favarites Desktop ‘Window Help

I Search P~ 2

Contents I Search Results |

F-45 MATLAB

@ Sirnulink

E@ Signal Processing Blockset
- B Getting Started

t-& lser Guide

+-1=] Blocks

i fr Functions

-~y Examples

e

mulink Demos
H-MATLAB Demos
#=) Release MNotes

- -

4 ¥ Signal Processing Blockset » Demos b

Signal Processing Blockset DEMOS

The Signal Processing Blockset™ product extends MATLAB® and Simulink® software with
efficient frame-based processing and System objects and blocks for designing, implementing,
and verifying signal processing systems. The blockset enables you to model streaming data and
multirate systems in communications, audiofiden, digital contral, radar/sonar, consumer and
medical electronics, and other numerically intensive application areas.

Product page at mathworks.com @

Adaptive Processing

Acoustic Moise Cancellation (LS tadel
Uses: Simulink Bl

Adaptive Filter Convergence

todel
Uses: Sirnulink iz

: | Equalization Model
}) Uses: Simulink &l

]

B

There are two entries under the Signal Processing Blockset Demos node:

¢ Simulink Demos — Expand this entry to see a categorical list of

block-based Signal Processing Blockset demos.

e MATLAB Demos — Expand this entry to see a categorical list of Signal

Processing Blockset System object demos.

3 To view the description of the Simulink-based Equalization demo, which
demonstrates adaptive channel equalization, expand the Simulink Demos

1-6

and Adaptive Processing nodes, then click Equalization.

Product Demos

@Help - 1ol =l
File Edt Wiew Go Favorites Desktop Window Help o
ISearch p-la - [-2 ‘ 4 Signal Processing Blockset » Demos v Simulink Dermos » - Adaphive Processing » Equalization V|

Contents I Search Resulks |

€3 MATLAB

& Sirmulink

- Signal Processing Blockset
B[Getting Started

B-&p User Guide

-] Blocks

Bl fx Functions

-~y Examples

By Demos

E-Simulink Dernos
L::J--Adaptwe Processing

ualization

Moise Canceler (RLS)
~Manstationary Channel
Tirme-Delay Estimation
#-Audio Processing
EHCommunications
-Fixed Paint
B-Radar
#-Spectral Analysis
[

#-Miscellaneous
H-tATLAE Demos

I —

Acoustic Noise Cancellation (L
daptive Filter Convergence

e orking with Signals Examples

Estimat

s

Imsadeq.mdl

Equalization

This dermo shows adaptive channel equalization using the LMS algarithrm to adaptively compute an
estimate of an FIR equalization filter.

Far more information on LMS adaptive filtering and equalization, see S. Haykin, Adaptive Filter
Theory, 3rd Ed., Prentice Hall, 1996

LMS Adaptive Equalization

Signal+Noise

Signal

ii B Input Nomatized 2P
Band-Limited S LMS Eror
ana-Limi ign Dispersive E
hite Noise Channal P Desited ks
LMS Filter A

qualizer
Response

Hoise
y oo B4
= z Sagnal I
Usar
Delay Filtar
Taps

Info
Copyright 1997-2009 The MathWods, Inc.

Open this model

BN

a Click Open this model to display the Simulink model for the
Equalization demo. The model window opens, and a Results window
opens to display the simulation results.

Introduction

1-8

E! Imsadeq
Filz Edit

Wiew Simulation Format Tools Help

=0l x|

D|@n§|%ﬁ|pc‘_¥|} II1UUU|N0rmal ‘H@

REET®

o et Nomalize PP
™ _| - L ormalized
Band Dimited LS Error
and-Limited Sign Dispersive IM
Wihite Moise Chpannel) Diesired s L
LME Filter il
Equalizer
Response
MNaize
o - L . o{C]
hl z Signal Frame hl
User
Delay Filter
Taps
Demo Notes
Ready [100%% [[|FixedstepDiscrete Y

LMS Adaptive Equalization

Signial+Moise

[]

Yy

Signal

Squared
emor

b Run the model by selecting Start from the Simulation menu in the

model window. The results of the simulation appear in the Results

window.

nodes, then click Equalization.

4 To view a version of the Equalization demo that uses System objects in
MATLAB, expand the MATLAB Demos and Adaptive Processing

Product Demos

(?\Help -=-|-[;‘-I-}ﬂ
File Edt Wiew Go Favorikes Desktop Window Help a
ISearch p-la - wp - | o < Demos » MATLAB Demos » Adaptive Processing » Equalization v|

Contents I Search Results |

€3 MATLAB

+ & Simulink

B & Signal Processing Blockset
- B Getting Started

-4 User Guide

#-1=1 Blocks

B fx Functions

-~y Examples

-y Demos

Simulink Demos

=-MATLAE Demos

- Adaptive Processing

--Acoustic Noise Cancellation (LMS)

an
Time-Delay Estimation
Audio Processing
Communications

+ Fixed Point

& Miscellaneous

B~/ Release Motes

Open signalblksimsadeq.m in the Editor

Least Mean Square Adaptive Equalization

Run in the Command Window

This demo shows adaptive channel equalization using the Least Mean Sguare (LMS) algorithm

to adaptively compute an estimate of an FIR equalization filter.
Contents

Initialization

-
* Stream Processing Loop
= Conclusion

.

Appendix

Initialization

Create a random number generator stream for the input Gaussian signal.
strl = Rand3tream.create('mtl9337ar', 'seed' [12345);
Creste a Delay component to delay the signal by six samples.
hdelay = =ignalhlks.Delay(6);
Create FIR digital filter to simulate a dispersive channel

d = 3.5
b=.5%(1+c0s (2%pi. d."[-1 0 1]1]):
hehannel = signalblks.DigicalFilter (...

'TransferFunction', 'FIR (all zeros)', 'Numerator',

<

by

sl

v

a Click Open signalblkslmsadeq.m in the Editor to display the System
object Equalization demo in the MATLAB editor.

b Run the demo by clicking the Run toolbar button ("3). The results of
the demo appear in the following figure.

Introduction

1-10

) Least Mean Square Adaptive Equalization - |EI|£|
File Edit Wiew Insert Tools Deskiop ‘Window Help 1u
DEde | | RAMBDEL-E 0B aE

Filter Taps

0 =l 100 150 200 250
Sguared errar
1
0.5
0 | T e . .]
0 50 100 150 200 250

_1| | 1 | | | | 1 |

i

1 2 3 4] B 7 g 5 10 M

Signal + MNoise
25IEI

100 1450 200
Signal + Moise

Demos on the Web

The MathWorks Web site contains demos that show you how to use
Signal Processing Blockset software. You can find these demos at
http://www.mathworks.com/products/sigprocblockset/demos. jsp.

You can run these demos without having MATLAB or the Signal Processing
Blockset product installed on your system.

http://www.mathworks.com/products/sigprocblockset/demos.jsp

Product Demos

Demos on MATLAB Central

MATLAB Central contains files, including demos, contributed by users and
developers of Signal Processing Blockset, MATLAB, Simulink, and other
products. Contributors submit their files to one of a list of categories. You can
browse these categories to find submissions that pertain to Signal Processing
Blockset software or a specific problem that you want to solve. MATLAB
Central is located at http://www.mathworks.com/matlabcentral/.

1-11

http://www.mathworks.com/matlabcentral/

Introduction

1-12

Working with the Documentation

In this section...

“Viewing the Documentation” on page 1-12

“Printing the Documentation” on page 1-13

“Using This Guide” on page 1-13

Viewing the Documentation

You can access the Signal Processing Blockset documentation using files you
installed on your system or from the Web using the MathWorks Web site.

Documentation in the Help Browser

This procedure shows you how to use the Help browser to view the blockset
documentation installed on your system:

1 In the MATLAB window, from the Help menu, click Product Help. The
Help browser opens.

2 From the list of products in the left pane, click Signal Processing
Blockset. In the right pane, the Help browser displays the Signal
Processing Blockset roadmap page.

3 Under the section titled Documentation Set, click Getting Started. The
Help browser displays the chapters of this manual.

Documentation on the Web
You can also view the documentation from the MathWorks Web site. The
documentation available on these Web pages is for the latest release,

regardless of whether the release was distributed on a DVD or as a Web
download:

1 Navigate to the Product Page at
http://www.mathworks.com/products/sigprocblockset/.

2 Click the Documentation link on the left side of the page. The blockset
documentation is displayed.

http://www.mathworks.com/products/sigprocblockset/

Working with the Documentation

Printing the Documentation

The Signal Processing Blockset documentation is also available in printable
PDF format. To view the documentation in PDF format:

1 In the MATLAB window, from the Help menu, click Product Help. The
Help browser opens.

2 From the list of products in the left pane, click Signal Processing
Blockset. In the right pane, the Help browser displays the Signal
Processing Blockset roadmap page.

3 Under the Printable (PDF) Documentation on the Web section, click
the links to view PDF versions of the blockset documentation.

Using This Guide

To help you effectively read and use this guide, here is a brief description of
the chapters and a suggested reading path.

Expected Background

This manual assumes that you are already familiar with the following
products:

e MATLAB, to write scripts and functions, and to use functions with the
command-line interface

® Simulink, to create simple models as block diagrams and simulate those
models

What Chapters Should | Read?
If You Are a New User — In the Getting Started Guide:

e Read Chapter 1, “Introduction” to learn about the installation process, the
products required to run Signal Processing Blockset software, and how
to view the blockset demos.

e Read Chapter 2, “Concepts, Terminology, and Feature Overview” to learn

about blockset functionality, review key concepts and terminology, and find

out more about product features.

1-13

Introduction

1-14

e Read Chapter 3, “Signal Processing Models” to learn how to build a signal
processing model and simulate its behavior.

e Read Chapter 4, “Filters” to create an adaptive noise cancellation system
using digital and adaptive filters.

e Read Chapter 5, “Code Generation” to generate ANSI® C code from your
signal processing model.

® Read Chapter 6, “Frequency Domain Signals” to learn how to view the
spectral content of a speech signal.

If You Are an Experienced User — In the User’s Guide:

¢ Read Chapter 1, “Working with Signals” and Chapter 2, “Advanced Signal
Concepts” for details on key operations common to many signal processing
tasks.

e Read the following chapters for discussions of how to implement various
signal processing operations:

= Chapter 3, “Filters”

= Chapter 4, “Transforms”

= Chapter 5, “Quantizers”

= Chapter 6, “Statistics, Estimation, and Linear Algebra”
= Chapter 7, “Working with Fixed-Point Data”

® See the block reference for a description of each block’s operation,
parameters, and characteristics.

Concepts, Terminology, and
Feature Overview

“Sample Model and Block Libraries” on page 2-2

“Key Blockset Concepts” on page 2-10

“Signal Processing Blockset Product Features” on page 2-16

“Configuring the Simulink Environment for Signal Processing Models”
on page 2-23

2 Concepts, Terminology, and Feature Overview

Sample Model and Block Libraries

In this section...

“Modeling System Behavior” on page 2-2

“Signal Processing Blockset Blocks” on page 2-5

Modeling System Behavior

Signal Processing Blockset blocks can simulate the behavior of complex signal
processing systems. For example, the Acoustic Noise Canceler demo model in
this section illustrates some of the capabilities of the blockset. In the model,
the signal output at the upper port of the Acoustic Environment subsystem

is white noise. The signal output at the lower port contains colored noise
and a signal from a .wav file. This demo model uses an adaptive filter to
remove the noise from the signal output at the lower port. When you run the
model, you hear both noise and a person playing the drums. Over time, the
adaptive filter in the model filters out the noise so all you hear is the person
playing the drums.

Note Later, this manual shows you how to create a similar model.

1 Open the Acoustic Noise Canceler demo model by typing dspanc at the
MATLAB command prompt. The demo model and the dspanc/Waterfall
scope window open. We discuss the scope window later in this procedure.

Sample Model and Block Libraries

_igix

File Edit Wiew Simulation Format Tools Help

DSE&| % ER (&= 4|52 r s oml] BBl pEBE®

Acoustic Noise Canceler
Muoizy Signal
noi
o
Envimnment
o —p—Q\ﬂ—' Ectefior Mo = Input Sutput —=F]
FRlter
i —— Filat's M | Dasired) Filtered Signal
Mo malzed
Filer Select e Stepsize LMS Em:|r
o0
Je{ Adapt
1 Wiate rfall
| Resat Wt=s | | S
Enable wE= Ll Jt32 | Scope
LS Fiker
Waterfall
E_b_q\xg_ Slhow Adapt
! »—o I o (T
R
==t ——]o04
Fast Adapt
| Audio playback in MATLAE: |
It
nginal Ul=F=0 Fitzred
Signal Signal Signal
Ready [100% [| |FixedstepDiscrets

2 Run this demo by selecting Start from the Simulation menu.

3 After the demo runs, listen to each of the signals by double-clicking the
Original Signal, Noisy Signal, and Filtered Signal blocks. Notice that as
the filter coefficients change, the noise in the signal decreases and you
can hear the drums more clearly.

4 The dspanc/Waterfall scope window displays the behavior of the adaptive
filter coefficients. The following figure shows the scope window when the
simulation begins. Each plot represents the values of the filter coefficients
of a normalized LMS adaptive filter. In the figure, you can see that they
are initialized to zero. Also, the color of the plots fades from red to yellow.

2-3

2 Concepts, Terminology, and Feature Overview

The current filter coefficients are plotted in red. The other plots represent
the filter coefficients at previous simulation times.

=101 %]

-} dspanc/Waterfall
File Edit Wiew ‘Window Help

|HEE L] e @

|l E R

50
-]
[
o
jr R
=
(3]
m .
20
Amplitud -
mplitude a0]
]
Running | |N:4D L:1 H:A0 |u[D]

The next figure shows the dspanc/Waterfall scope window when the filter
coefficients have reached their steady state.

2-4

Sample Model and Block Libraries

-} dspanc/Waterfall : =lo =]

File Edit Wiew ‘Window Help

IERER NS A GGl =

50
0.1 =
ol
0.1

[
o
jr R
=
(3]
vl

: .

Amplitud -

mplitude a0 =

I

Stopped | |N:4D L:1 H:A0 |u[D]: 2448

5 To speed up or slow down the rate of filter adaption, double-click the switch
attached to the blocks labeled Fast Adapt and Slow Adapt. When you
connect the switch to the block labeled Fast Adapt, the filter coefficients
reach steady state in a shorter time. To hear the difference in the filtered
signals, run the demo using both the fast adapt and the slow adapt rates.
Listen to the filtered signal produced by each.

The “Adaptive Filters” section of the Signal Processing Blockset User’s Guide
contains more information on the Acoustic Noise Canceler demo.

Signal Processing Blockset Blocks

The Signal Processing Blockset product organizes a collection of blocks
within nested libraries. These libraries are specifically for digital signal
processing applications. They include blocks for operations such as multirate
and adaptive filtering, matrix manipulation, linear algebra, statistics, and
time-frequency transforms. You can locate these blocks using the main Signal
Processing Blockset library or the Simulink Library Browser:

2-5

2 Concepts, Terminology, and Feature Overview

e “Accessing Blocks Directly” on page 2-6
® “Accessing Blocks with the Library Browser” on page 2-8

Accessing Blocks Directly

You can access the main Signal Processing Blockset library from the MATLAB
command line. This procedure shows you how to open this library and locate
the source blocks:

1 Open the library by typing dsplib at the MATLAB command prompt.

E!Lihrary: dspliby4 =]

File Edit View Formab Help

Sl e SNl
L \L\“l' /»y;,T\R i) —F)
Signal Signal Filtering Transforms Signal
Processing Processing Cperations
Sources Sinks
z+1 Ax=h -
7z-1 %% ﬁ_ %
Estirnation Statistics nath Quantizers Signal
Functions Management

Signal Processing Blockset 7.0
Femmaht 1355 2008 - -
The MathWions, Inc.

The Signal Processing Blockset libraries are

¢ Signal Processing Sources — Blocks that create discrete-time or
continuous-time signals or import these signals from the MATLAB
workspace

¢ Signal Processing Sinks — Blocks used to display data in a scope or send
data to the MATLAB workspace

¢ Filtering — Blocks used to design digital, analog, adaptive, and
multirate filters

2-6

Sample Model and Block Libraries

e Transforms — Blocks that transform data into different domains

¢ Signal Operations — Blocks that perform operations such as convolution,
downsampling, upsampling, padding, and delaying the input

® Estimation — Blocks for linear prediction, parametric estimation, and
power spectrum estimation

e Statistics — Blocks that perform statistical operations such as
correlation, maximum, and mean

e Math Functions — Blocks used to perform mathematical operations,
matrix operations, and polynomial functions

® Quantizers — Blocks that create scalar and vector quantizers as well
as uniform encoders and decoders

® Signal Management — Blocks for buffering, selecting part of a signal,
modifying signal attributes, and edge detection

Double-click the Signal Processing Sources library. The library displays
the blocks it contains. You can use the blocks in this library to create
discrete-time or continuous-time signals.

2-7

2 Concepts, Terminology, and Feature Overview

2-8

[C]Library: dspsrcs4 10l x|

File Edit Wiew Format Help

Signal Processing Sources

. 'SP Lin
1 b 1:10 B W>

Sknal From
[tant ine W
onstan Warkspace Sine Wave

4‘_‘\1%_ 4-Phas=e'n L
Clock

< a8
Discrets H-Sampla Multiphase Clock
Impulse Enablke
aya(d) p |:\\ M P t'l
Identity Matrix Constant Diagonal Random From Audio
Mlatrix Soure Device
spesch_ditavk, ., UDP Receive

A: 22050 Hz, 16 bit, mono

From Multimedia Fike LDFP Receie

3 Drag any block into a model, double-click the block, and click Help to learn
more about the block functionality.

Accessing Blocks with the Library Browser

Starting the Simulink product displays the Simulink Library Browser. To
start Simulink, type simulink at the MATLAB command line. One way
to explore the Signal Processing Blockset product is to expand the Signal
Processing Blockset entry in the tree pane of this browser.

Sample Model and Block Libraries

=] simulink Library Browser

File Edit “iew Help

=101]

JJ = “_I Search:l Enter part of a block or library name LI .,3
Libraries
[T AT DT L
L - E ztirnat
E Image Acquisition Toolbox _I AW smaten
E Instrument Control Toolbox
E Link for Cadence Incisive Filtering

- Tigh| Link for Discovery
Link for bodelSim
Model Predictive Contral Toolbox

L%
L)
E]--E Mewral Metwork Toolbox
- W] OPLC Taoaolbox
I:I--E Physical Modeling D evelopment
E]--E RF Blockset
E Real Time Windows Target
[]--E Real-Time Workshop
E]--E Fieal-Time “workshop Embedded Coder

E Repart Generatar
E Robust Control Toolbox

- Estimation
[#1- Filkeirg
[#- Math Functions

- (Juantizers

[#- Signal Management

- Signal Operations

- Signal Processing Sinks

- Signal Processing Sources

- Statigtics

- Transforms

]--E SimEvents

]--E SimPowerSystems

]--E Simzcape

]--E Simulink Contral D ezign

E Simulink Design Yenfier

- W] Simulink Extras

[ZI--E Sirmulink Parameter Estimation
E]--E Simulink. Responze O ptimization

e O IOy O

& H &

>

E & B EE E

Math Functions

Guantizers

Signal M anagement

Signal Operationz

Signal Processing Sinks

Signal Processing Sources

Statistics

Transforms

Block Description

E stimation:

Ready

2 Concepts, Terminology, and Feature Overview

2-10

Key Blockset Concepts

In this section...

“Signals” on page 2-10

“Sample Time” on page 2-10

“State” on page 2-11

“Sample-Based Signals” on page 2-11
“Frame-Based Signals” on page 2-12

“Tunable Parameters” on page 2-14

Signals

Signals in the Simulink environment can be real or complex valued. You
can represent signals with data types such as single-precision floating point,
double-precision floating point, or fixed point. Signals can be either sample
based or frame based, and single channel or multichannel.

Sample Time

A discrete-time signal is a sequence of values that correspond to particular
instants in time. The time instants at which the signal is defined are the
signal sample times, and the associated signal values are the signal samples.
For a periodically sampled signal, the equal interval between any pair of
consecutive sample times is the signal sample period, T,. The sample rate, F,,
is the reciprocal of the sample period. It represents the number of samples in
the signal per second:

ol
TS

Note In the block parameter dialog boxes, the term sample time refers to
the sample period of the signal T..

Key Blockset Concepts

State

Some Signal Processing Blockset blocks have state and others do not. If
a block does not have state, the block calculates its output using only the
current input. If a block has state, the output of the block depends on the
current input as well as past inputs and/or outputs.

Sample-Based Signals

A signal is sample based if it propagates through the model one sample at a
time. To represent a single-channel sample-based signal, create a 1-by-1-by-T
matrix. Each matrix element represents one sample from the channel, and T
is the total number of samples in the channel. To represent a multichannel
signal with M*N independent channels, create an M-by-N-by-T matrix. Each
matrix element represents one sample from a distinct channel, and 7 is the
total number of samples in each channel.

Consider the following model.

E.!sample_hased ;IEIEI

File Edit Wiew Simulation Farmat Tools Help

D|@E@|J{-E|9Q|P II'ID.D INormaI =]

16 4>|>—> yout

Signal From Gain Signal Ta
WMiatespace Wortksp ace
Ready [100% | [|ode4s 4

The Signal From Workspace block outputs a sample-based signal. The Gain
block multiplies all the samples of the signal by two. Then, the Signal To
Workspace block outputs the signal to the MATLAB workspace in a variable

2-11

2 Concepts, Terminology, and Feature Overview

2-12

called yout. The following figure is a symbolic representation of how the
single-channel, sample-based signal propagates through the model.

t=0
654321 12 10 8 6 4 2
1:8 yout
———
Signal Fram Bain Signal To
Warkspace Workspace

If you type yout at the MATLAB command prompt after you run the model,
you see, in part:

yout(:,:,1) =
2

yout(:,:,2) =
4

yout(:,:,3) =
6

Because yout represents a single-channel, sample-based signal, each sample
of the signal is a different page of the output matrix.

Frame-Based Signals

A signal 1s frame based if it propagates through a model one frame at a time.
A frame of data is a collection of sequential samples from a single channel or
multiple channels. One frame of a single-channel signal is represented by an
M-by-1 column vector. One frame of a multichannel signal is represented by
anM-by-N matrix. Each matrix column is a different channel, and the number
of rows in the matrix is the number of samples in each frame.

You can typically specify whether a signal is frame based or sample based
using a source block from the Signal Processing Sources library. Most other

Key Blockset Concepts

signal processing blocks preserve the frame status of an input signal, but
some do not.

The process of propagating frames of data through a model is frame-based
processing. Because multiple samples can process at once, the computational
time of the model improves. “Working with Signals” in the Signal Processing
Blockset User’s Guide contains more information about frame-based
processing.

Consider the following model.

[Clframe_based 10l =]
File Edit Wiew Simulation Format Tools Help
D|D”H§|JEE|QQ|> lanrmaI v||
Indicotes o
/frume-husedsignul
1:6 :IQ ywout
Signal From Gain Signal To
Motspace WMiatep ace
Read [100% | | |ode4s v

To have the Signal From Workspace block output a frame-based signal, set
the Samples per frame parameter to 2 and run the model. The lines that
connect the blocks become double lines, indicating a frame-based signal; in
this example, there are two signals per frame.

The Gain block multiplies all the samples of this signal by two. Then, the
Signal To Workspace block outputs the signal to the MATLAB workspace
in the form of a variable called yout. The following figure is a symbolic
representation of how the frame-based signal propagates through the model.

2-13

2 Concepts, Terminology, and Feature Overview

2-14

; =5—_3—lﬁ>b:1n=6=2=p ou
Signal From Gain Signal To
Wotspace =7 t=1 t=1 WMiotesp dce

If, after you run the model, you type yout at the MATLAB command prompt,
the following is a portion of what you would see:

yout =

NDNO oo DN

—

Because yout represents a single-channel, frame-based signal, the output
is a column vector. Once you export your signal values into the MATLAB
workspace, they are no longer grouped into frames.

Tunable Parameters

There are some parameters that you can change, or tune, during simulation.
To change a tunable parameter during simulation, double-click the block to
open its dialog box, change any tunable parameters to the desired settings,
and then click OK. The simulation now uses the new parameter settings.

Note Opening a dialog box for a source block causes Simulink to pause. While
Simulink is paused, you can edit the parameter values. You must close the
dialog box to have the changes take effect and allow Simulink to continue.

As a rule, parameters that specify numeric values are tunable. However, some
parameters are not tunable, such as parameters that change the operational
mode of a block. For example, you cannot directly or indirectly change the
following while a simulation is running:

¢ Number of block ports

Key Blockset Concepts

® Block sample rate

® Signal data type

For more information on tunable parameters, see the “Tunable Parameters”
section of the Simulink documentation.

2-15

2 Concepts, Terminology, and Feature Overview

Signal Processing Blockset Product Features

In this section...

“Frame-Based Operations” on page 2-16
“Multirate Processing” on page 2-17
“Fixed-Point Support” on page 2-17

“Real-Time Code Generation” on page 2-18
“Adaptive and Multirate Filtering” on page 2-18
“Quantization” on page 2-18

“Statistical Operations” on page 2-19

“Linear Algebra” on page 2-19

“Parametric Estimation” on page 2-19

“Matrix Support” on page 2-20

“Data Type Support” on page 2-20

Frame-Based Operations

Most real-time signal processing systems optimize throughput rates

by processing data in “batch” or “frame-based” mode. By propagating
multisample frames instead of the individual signal samples, the signal
processing system can take advantage of the speed of signal processing
algorithm execution, while simultaneously reducing the demands placed on
the data acquisition (DAQ) hardware.

For an example of frame-based operations, open the LPC Analysis and
Synthesis of Speech demo by typing dsplpc at the MATLAB command
prompt. To run this demo, from the Simulation menu, select Start. A
frame-based signal is used for computation throughout the model.

For more information about frame-based signals, see “Frame-Based Signals”
on page 2-12.

2-16

Signal Processing Blockset™ Product Features

Multirate Processing

Signal Processing Blockset blocks support multirate processing. This means
that one port can have a different sample time than another port on the same
block. Multirate processing is achieved by port-based sample time support
across the blocks. You can find multirate blocks in the Multirate Filters
sublibrary, the Signal Operations library, and the Buffers sublibrary.

For more information, see “Inspecting Sample Rates and Frame Rates” in the
Signal Processing Blockset User’s Guide and “Scheduling Considerations” in
the Real-Time Workshop® documentation.

Fixed-Point Support

Many Signal Processing Blockset blocks have fixed-point support. This allows
you to design discrete-time dynamic signal processing systems that use
fixed-point arithmetic. Fixed-point support in the blockset includes:

¢ Signed two’s complement fixed-point data types
e Word sizes from 2 to 128 bits in simulation

* Word sizes from 2 to the size of a long in the Real-Time Workshop ANSI C
code-generation target

¢ Overflow handling, scaling, and rounding methods

e ANSI C code generation for deployment on a fixed-point embedded
processor, with the Real-Time Workshop product. The generated code uses
all allowed simulation data types supported by the embedded target, and
automatically includes all necessary shift and scaling operations.

Simulating your fixed-point development choices before implementing them
in hardware saves time and money. Signal Processing Blockset software
provides built-in fixed-point operations that save time in simulation and
provide automatically optimized code.

For fixed-point blocks, the Signal Processing Blockset and Real-Time
Workshop products produce optimized fixed-point code ready for execution
on a fixed-point processor. All the choices you make during simulation with
the blockset in terms of scaling, overflow handling, and rounding methods
are automatically optimized in the generated code, without the need for
time-consuming and costly hand-optimized code.

2-17

2 Concepts, Terminology, and Feature Overview

2-18

For more information on fixed-point support in the Signal Processing Blockset
product, see “Working with Fixed-Point Data” in the Signal Processing
Blockset User’s Guide.

Real-Time Code Generation

For all Signal Processing Blockset blocks, the Signal Processing Blockset and
Real-Time Workshop products produce optimized, compact, ANSI C code.

Chapter 5, “Code Generation” explains this process in more details.

Adaptive and Multirate Filtering

The Adaptive Filters and Multirate Filters sublibraries provide key tools
for the construction of advanced signal processing systems. You can use
adaptive filter block parameters to tailor signal processing algorithms to
application-specific environments.

For an example of adaptive filtering, open the LMS Adaptive Equalization
demo by typing lmsadeq at the MATLAB command prompt. Equalization

is important in the field of communications. It involves estimating and
eliminating dispersion present in communication channels. In this demo, the
LMS Filter block models the dispersion of the system. The plot of the squared
error demonstrates the effectiveness of this adaptive filter.

For more information on adaptive filters, see “Adaptive Filters” on page 4-9.
For more information on multirate filters, see “Multirate Filters” in the
Signal Processing Blockset User’s Guide.

Quantization

The process of quantization allows you to represent your input signal with

a finite number of values. This process helps you limit the bandwidth of
your transmitted signal. The Signal Processing Blockset product has a
number of blocks that can help you to design and implement scalar and
vector quantizers. In the main Signal Processing Blockset library, open the
Quantizers library to view the available blocks. See the block reference pages
for any of these blocks to find out more information about their functionality.

Signal Processing Blockset™ Product Features

For more information about quantization, see “Analysis and Synthesis of
Speech” in the Signal Processing Blockset User’s Guide.

Statistical Operations

Use the blocks in the Statistics library for basic statistical analysis. These
blocks calculate measures of central tendency and spread such as mean,
standard deviation, and so on. They can also calculate the frequency
distribution of input values.

See “Statistics” in the Signal Processing Blockset User’s Guide for more
information.

Linear Algebra

The Matrices and Linear Algebra sublibrary provides Cholesky, LU, LDL,
and QR matrix factorization methods and equation solvers based on these
methods. It also provides blocks for common matrix operations.

See “Linear Algebra” in the Signal Processing Blockset User’s Guide for more
information.

Parametric Estimation

The Parametric Estimation sublibrary provides four blocks for modeling a
signal as the output of an AR system:

Burg AR Estimator

e (Covariance AR Estimator

Modified Covariance AR Estimator
Yule-Walker AR Estimator

These blocks allow you to compute the AR system parameters based on
forward error minimization, backward error minimization, or both.

In the Comparison of Spectral Analysis Techniques demo, dspsacomp, an IIR

all-pole filter filters a Gaussian noise sample. Three different blocks, each
with its own method, estimate the spectrum of the IIR filter.

2-19

2 Concepts, Terminology, and Feature Overview

2-20

Matrix Support
The Signal Processing Blockset product takes full advantage of the matrix

format of the Simulink environment. Some typical uses of matrices in signal
processing simulations are:

® General two-dimensional array

A matrix can be used 1n its traditional mathematical capacity, as a simple
structured array of numbers. The Matrices and Linear Algebra sublibrary
contains most of the blocks used for general matrix operations.

e Factored submatrices

A number of the matrix factorization blocks in the Matrix Factorizations
sublibrary store the submatrix factors (such as lower and upper
submatrices) in a single compound matrix. See the LDL Factorization and
LU Factorization blocks for examples.

e Multichannel frame-based signal

The standard format for multichannel frame-based signals is a matrix,
where each column represents a different channel. For example, a matrix
with three columns contains three channels of data. The number of rows in
the matrix is the number of samples in each frame.

The following sections of the Signal Processing Blockset User’s Guide provide
more information about working with matrices:

® “Creating Sample-Based Signals”

® “Creating Frame-Based Signals”

® “Creating Multichannel Sample-Based Signals”

® “Creating Multichannel Frame-Based Signals”

® “Deconstructing Multichannel Sample-Based Signals”

® “Deconstructing Multichannel Frame-Based Signals”

Data Type Support

All Signal Processing Blockset blocks support single- and double-precision
floating-point data types during both simulation and Real-Time Workshop C
code generation. Many blocks also support fixed-point and Boolean data types.

Signal Processing Blockset™ Product Features

To see which data types a particular block supports, refer to the “Supported
Data Types” section of the block reference page.

For information about data type support and code generation coverage for
all Signal Processing Blockset blocks, use the Signal Processing Blockset
Data Type Support Table. To access the table, select Help > Block
Support Table > Signal Processing Blockset or Help > Block Support
Table > All Tables from the Simulink model help menu.

L=

File Edit View Simulaton Format Tools | Help

B | = E % | cli'E El | &S Lsing Simulink 0.0 INu:urmal j|
Blocks
Blocksets k
Al Tabls
Shortcuts Simulink
S-Functions Communications Blockset

Demos

Signal Processing Blodkset k
Video and Image Processing Blockset

Terms of Use, ..
Patents...

About Simulink

[100% | | |ode4s v

You can also access the Signal Processing Blockset Data Type Support Table
by typing showsignalblockdatatypetable at the MATLAB command line.

It is often necessary to convert between different data types when working
with Simulink models. The following table lists all data types supported by

2-21

2 Concepts, Terminology, and Feature Overview

2-22

Signal Processing Blockset blocks and which function or block to use when
converting between data types.

Supported Data Types

Data Types
Supported by Signal
Processing Blockset
Blocks

Functions and Blocks for
Converting Data Types

Comments

Double-precision
floating point

® double
e Data Type Conversion block

Simulink built-in data type
supported by all Signal
Processing Blockset blocks

Single-precision floating
point

® single

e Data Type Conversion block

Simulink built-in data type
supported by all Signal
Processing Blockset blocks

Boolean

® boolean

e Data Type Conversion block

Simulink built-in data type.

Integer (8-,16-, or
32-bits)

® int8, int16, int32

e Data Type Conversion block

Simulink built-in data type.

Unsigned integer
(8-,16-, or 32-bits)

® yint8, uint16, uint32

e Data Type Conversion block

Simulink built-in data type.

Fixed-point data types

e Data Type Conversion block

¢ Simulink® Fixed Point™ product
num2fixpt function

¢ Functions and GUIs for designing
quantized filters with the Filter
Design Toolbox™ (compatible with
Filter Realization Wizard block)

To learn more about
fixed-point data types in the
Signal Processing Blockset
product, see “Working with
Fixed-Point Data” in the
Signal Processing Blockset
User’s Guide.

Configuring the Simulink® Environment for Signal Processing Models

Configuring the Simulink Environment for Signal
Processing Models

In this section...

“Using dspstartup.m” on page 2-23

“Settings in dspstartup.m” on page 2-24

Using dspstartup.m

The Signal Processing Blockset product provides a file, dspstartup.m,

that lets you automatically configure the Simulink environment for signal
processing simulation. We recommend these configuration parameters for
models that contain Signal Processing Blockset blocks. Because these blocks
calculate values directly rather than solving differential equations, you must
configure the Simulink solver to behave like a scheduler. The solver, while in
scheduler mode, uses a block sample time to determine when the code behind
each block executes. For example, if the sample time of a Sine Wave block

is 0. 05, the solver executes the code behind this block and every other block
with this sample time once every 0.05 seconds.

Note When working with models that contains Signal Processing Blockset
blocks, use source blocks that enable you to specify their sample time. When
your source block does not have a Sample time parameter, you must add a
Zero-Order Hold block in your model and use it to specify the sample time.
For more information, see “Continuous-Time Source Blocks” in the Signal
Processing Blockset User’s Guide. The exception to this rule is the Constant
block, which can have a constant sample time. When it does, Simulink
executes this block and records the constant value once, which allows for
faster simulations and more compact generated code.

To use the dspstartup file to configure Simulink for signal processing
simulations, you can

® Type dspstartup at the MATLAB command line. All new models have

settings customized for signal processing applications. Existing models
are not affected.

2-23

2 Concepts, Terminology, and Feature Overview

® Place a call to dspstartup within the startup.m file. This is an efficient
way to use dspstartup if you want these settings to be in effect every time
you start Simulink. For more information about performing automated
tasks at startup, see the documentation for the startup command in the

MATLAB Function Reference.

The dspstartup file executes the following commands:

set_param(O,

‘SingleTaskRateTransMsg',
‘multiTaskRateTransMsg',

‘Solver',
‘SolverMode',
‘StartTime',
'StopTime',
'FixedStep',
‘SaveTime',
‘SaveOutput’,
"AlgebraicLoopMsg’,
‘SignallLogging’,

‘error',
‘error',
‘fixedstepdiscrete',
‘SingleTasking',
'0.0',

‘inf',

‘auto',

‘off',

‘off',

‘error',

‘off');

You can edit the dspstartup file to change any of these settings or to add
your own custom settings. For complete information about these settings, see
“Model and Block Parameters” in the Simulink documentation.

Settings in dspstartup.m

A number of the settings in the dspstartup file are chosen to improve the

performance of the simulation:

e 'Solver' is set to 'fixedstepdiscrete'.

This selects the fixed-step solver option instead of the Simulink default
variable-step solver. This mode enables code generation from the model

using the Real-Time Workshop product.

® 'Stop time' issetto 'Inf'.

The simulation runs until you manually stop it by selecting Stop from

the Simulation menu.

® 'SaveTime' is set to 'off"'.

2-24

Configuring the Simulink® Environment for Signal Processing Models

Simulink does not save the tout time-step vector to the workspace.
The time-step record is not usually needed for analyzing discrete-time
simulations, and disabling it saves a considerable amount of memory,
especially when the simulation runs for an extended time.

'SaveOutput' is set to 'off"'.

Simulink Outport blocks in the top level of a model do not generate an
output (yout) in the workspace.

2-25

2 Concepts, Terminology, and Feature Overview

2-26

Signal Processing Models

® “Creating a Block Diagram” on page 3-2

e “Setting the Model Parameters” on page 3-6
¢ “Running the Model” on page 3-9

¢ “Modifying Your Model” on page 3-12

3 Signal Processing Models

Creating a Block Diagram

You can build signal processing models using blocks from many different
Simulink and Signal Processing Blockset libraries. In this section, you move
through the tasks needed to create a signal processing model that displays a
sine wave over time:

® Opening a new model

¢ Dragging blocks into the model

¢ Connecting the blocks

In subsequent procedures, you set the block parameters and run the model.
Later in the book, you expand upon this model to create a system capable of

adaptive noise cancellation. You also use the Real-Time Workshop product to
generate code from this model:

1 Begin building your model. Open the main Signal Processing Blockset
library by typing dsplib at the MATLAB command prompt.

Creating a Block Diagram

[Z1Library: dsplibyv4 =10l x|
File Edit Wwiew Format Help
Sla) e
5| [iy
L »J/\S' /ﬂ/]\p\ fill) ++F i)
Signal Signal Filtering Transforms signal
Processing Processing Cperations
Sources Sinks
Z+1 Ax=h z-l
771 % ﬁ_
Estimation Statistics M ath Quantizers Signal
Functions Management
Signal Frocessing Blodeset 7.0
The MathWads, Inc.

2 Open a new model by selecting File > New > Model in the Signal

Processing Blockset library window.

luntitled ; =]

File Edit WYiew Simulation Format Tools Help

D|@H§|%E|DQ|> llNormaI 'l

Rea [100% |odets v

3 Signal Processing Models

3 Display the Signal Processing Blockset Sources sublibrary by
double-clicking the Signal Processing Sources icon in the main library

window.
=] Library: dspsresa I]
File Edit WView Format Help
Signal Processing Sources
ISP Lin
1 1:10
Signal Fom -
Genstant Workspace Sine Wawve Chirp
!L‘*@’ 4-Phasen
o Chck
Discete H-Samplk Multiphass Clock
Impulss Enable
eyela) I:\] h.]
Identity Matrix Constant Diagonal Randam From Audio
Matrix Souce Cervice
speech_dit.avie . . .
A: 32050 Hz, 16 bil, THAR UEF Receive
From Multimedia Fils HOP Receis

4 Click-and-drag a Sine Wave block into your new model. The Sine Wave
block generates a sinusoidal signal.

3-4

Creating a Block Diagram

E!untitled & ;Iglll

File Edit WYiew Simulation Format Tools Help

D|@H§|%E|DQ|> llNormaI 'l

IJ—LIDSP
L7

Sine Wawve

Rea [100% [[|odets

4

5 Add a Scope block from the Simulink Sinks library to your model.

6 Connect the two blocks by selecting the Sine Wave block, holding down the
Ctrl key, and then selecting the Scope block.

File Edit Wiew Simulaton Format Tools Help

=10l x|

DSH& R e 4D

c={'» = oo

il

0

Y.

Sine Wave

Soope

Rea|100% [[[ode45

4

Now that you have created a model, you are ready to set your model

parameters.

3 Signal Processing Models

Setting the Model Parameters

Once you have built your signal processing model, you can set your model
parameters. Nearly all blocks have an associated block parameters dialog
box. Double-click the block to display this dialog box. Enter values into
this dialog box to ensure that your model accurately simulates the desired
behavior of your system.

Note The software provides premade models as starting points to each
procedure in this manual. To prevent yourself from overwriting these models,
from the File menu, select Save as. Then, save your modified model in a
different folder.

3-6

1 If the model you created in “Creating a Block Diagram” on page 3-2 is not

open on your desktop, you can open an equivalent model by typing

doc_gstut1

at the MATLAB command prompt.

Open the Configuration Parameters dialog box by selecting
Simulation > Configuration Parameters from the model menu.

Set the following Solver options:

e Type: Fixed-step

e Solver: Discrete (no continuous states)

These are the recommended Solver options for Signal Processing Blockset
models. For more information on recommended settings, see “Configuring
the Simulink Environment for Signal Processing Models” on page 2-23.

The Configuration Parameters dialog box should now appear as follows:

Setting the Model Parameters

Configuration Parameters: doc_gstutl/Configuration (Active) x|
Select: — Simulation time =
- Solver
Start time: | 0.0 Stop time: | 10.0
-Data Impart/Export rtams I p time I
- Optimization

£ Diagnostics —Solver options

Type: IFixed-step ;I Salver: IDiscrete {no continuous states) ;I

Fixed-step size (fundamental sample time): Iautn

—Tasking and sample time options

Periodic sample time constraint: IUncnnstrained
-Hardware Implementation
-Model Referendng Tasking mode for periodic sample times: |Auto

L] Lo

[=-Simulation Target
i Symbals

“Custom Code [™ Higher priarity value indicates higher task priority
=-Real-Time Warkshop

[Automatically handle rate transition for data transfer

‘). QK I Cancel Help Apply |

4 Click OK to apply the change and close the dialog box.
5 Open the Sine Wave dialog box by double-clicking the Sine Wave block.

6 Set the block parameters as follows:
* Frequency (Hz) = 0.5
e Sample time = 0.05

3-7

3 Signal Processing Models

E! Block Parameters: Sine Wave x|

Sine Wawe [mazk)] [ink)

Output zamples of a zsinuzoid. To generate more than one sinusoid
simultaneously, enter a vector of values for the Amplitude,
Frequency, and Phase offset parameters.

Main IDataTypes I
Armplitude:
n

Frequency [Hz):

jos

Phasze offset [rad):

jo

Sample mode:; I Dizcrete LI
Dutput cormplesity: | Real LI
Cormputation methaod: I Trigonometric fen ;I
Sample time:

joog

Samples per frame:

1

Resetting states when re-enabled: I Restart at time zera LI

ok I LCancel | Help |

Note On Signal Processing Blockset blocks, the Sample time parameter
represents the sample period of the signal. The sample period is the
amount of time between each sample of the signal.

7 Click OK to apply the settings and close the dialog box. Now that you
have set your model parameters, you are ready to run your model and
view its behavior.

Running the Model

Running the Model

After you set the desired model parameters, you can run your model and view
its behavior. The Signal Processing Blockset product has many scope blocks
that you can use to display your model output. In this example, you use a
Simulink Scope block to view your sinusoidal signal:

1 If the model you created in “Setting the Model Parameters” on page 3-6 is
not open on your desktop, you can open an equivalent model by typing

doc_gstut2
at the MATLAB command prompt.

2 Run the model by selecting Start from the Simulation menu.

3 Display the sinusoidal signal in the Scope window by double-clicking the
Scope block.

L=
SHE|OLH MEE BAF

4 Autoscale the output to fit in the scope window by clicking dh .

3 Signal Processing Models

L=
5B LPLL ABEB DA G

U

10

Time offset: 0

You can achieve a more finely sampled output by decreasing the Sample
time parameter. For example, change the Sample time parameter in the
Sine Wave block to 0.005, run the model, and autoscale the output. The
Scope window should now look similar to the following figure.

ST=I
SHE|OLH MEE BAF

Time offset: 0

3-10

Running the Model

5 Experiment with your model. Change the Frequency (Hz) and Sample
time parameters of the Sine Wave block. Then, run your model to see
the effect. Now you are ready to add noise to your sinusoidal signal and
view its effect.

3-11

3 Signal Processing Models

Modifying Your Model

A system’s input signal can contain noise that was introduced as the signal
traveled over a wire or through the air. You can incorporate noise into

the model of your system to simulate this real-world noise. Then, you can
experiment with ways to eliminate its effect at both low and high frequencies.
In this topic, you model a real-world signal by adding noise to your input
signal. In the next chapter, you use a filter to convert this noise to low
frequency noise and another filter to eliminate this noise from your signal:

1 If the model you worked with in “Running the Model” on page 3-9 is not

3-12

open on your desktop, you can open an equivalent model by typing

doc_gstut2

at the MATLAB command prompt.

Add a Random Source block to your model from the Signal Processing
Sources library to represent the noise in your system. Set the block
parameters before you connect the blocks. Double-click the Random Source
block and set the block parameters as follows:

® Source type = Gaussian

® Method = Ziggurat

® Mean =0

® Variance = 1

* Repeatability = Specify seed
¢ Initial seed = [23341]

¢ Sample time = 0.05

Based on these parameters, the Random Source block produces Gaussian
random values using the Ziggurat method. The Repeatability and
Initial seed parameters ensure that the block outputs the same signal
each time you run the model. The following figure shows the completed
Random Source dialog box.

Modifying Your Model

=] source Block Parameters: Random Source x|

— Randam Source [maszk] [link]

Output a random zignal with unifarm or Gaussian [nomial] distibution. Set output
repeatahility to Nonrepeatable [black randamly selects initial seed every time zimulation
ztarts], Aepeatable [block randanly selects initial seed once and uses it every time
gimulation startg], or Specify seed [block uses specified initial seed every time simulation
starts, producing repeatable output].

— Parameters

Wariance:

|

Hepeatabilit_l,l:lSpecif_l,l zeed ;I

Initial seed:
|[23341]

[Inherit output port attibutes
Sample mode: IDiscrete LI

Sample time:
j0.05

Samples per frame:
|

Output data tppe; I Diouble

=
=

Complesity: I Real

Ok I Cancel | Help |

Opening this dialog box causes a running simulation to pause. While
simulation is paused, you can edit the parameter values. You must close the
dialog box to have the changes take effect and allow simulation to resume.

3 Add a Sum block to your model from the Simulink Math Operations library
to add random noise to your input signal.

3-13

3 Signal Processing Models

3-14

4 Set the Sum block parameters. Open the Sum dialog box by double-clicking
the Sum block. Change the List of signs parameter to ++| and click OK.

5 Set the Scope parameters. Open the Scope window by double-clicking
the Scope block. Open the Scope parameters dialog box by clicking the
Parameters icon in the Scope window.

I [
salrcepr ABRE DA F

[Parameters
o T

In the Scope parameters dialog box, set the Number of axes parameter
to 2 and click OK. Now, the Scope window has two plotting windows and
the Scope block has two input ports.

) "Scope’ parameters =10 =l
General | Drata History | Tip: try right clicking on axes

Axes

Tumber of axes: E [" floating scope
Time range: Iautn
Tick labels: Ibnﬁnm axis only 'I

Sampling
Decimation j |1

OK | Canoell Help | Applyl

Modifying Your Model

6 Connect the output of the Sine Wave block and the output of the Random
Source block to the input of the Sum block. Then, connect the output of the
Sum block to the second input of the Scope block. When you are finished,
your model should look similar to the figure below.

_inix]

File Edit WView Simulation Format Tools Help

DS EHES| 4B 4|22 r = oo

a IR

Sine Wawve »

Scope

v G

Random
Soume

Ready |100% | | [FixedstepDiscrete v

7 Verify the parameters of your Sine Wave block. Open the Sine Wave dialog
box by double-clicking the Sine Wave block. Verify that the Frequency
(Hz) parameter is set to 0.5 and the Sample time parameter is set to
0.05. Note that the value of the Sample time parameter of the Sine
Wave block is the same as the value of the Sample time parameter of
the Random Source block.

8 Run your model and view the results in the Scope window. The block

displays the original sinusoidal signal in the top axes and the signal with
the noise in the bottom axes.

3-15

3 Signal Processing Models

3-16

L=
SHE|OLH MEE BAF

Signal

Note You can change the signal labels in the Scope window by
right-clicking the axes and selecting Axes properties. In the Title text
box, enter your signal label.

You have now created and run a signal processing model that displays a
sinusoidal signal over time. During this process, you created a digital sine
wave and viewed it in the Scope window. You also added noise to your
sinusoidal signal and viewed its effect. In Chapter 4, “Filters”, you increase
the complexity of your signal processing model by adding filters to eliminate
the presence of this noise.

Filters

¢ “Digital Filters” on page 4-2
e “Adaptive Filters” on page 4-9

4 Filers

Digital Filters

4-2

In this section...

“Designing a Digital Filter” on page 4-2
“Adding a Digital Filter to Your Model” on page 4-6

Designing a Digital Filter

You can design lowpass, highpass, bandpass, and bandstop filters using either
the Digital Filter Design block or the Filter Realization Wizard. These blocks
are capable of calculating filter coefficients for various filter structures. In
Chapter 3, “Signal Processing Models”, you added white noise to a sine wave
and viewed the resulting signal on a scope. In this section, you use the Digital
Filter Design block to convert this white noise to low frequency noise so you
can simulate its effect on your system.

As a practical application, suppose a pilot is speaking into a microphone
within the cockpit of an airplane. The noise of the wind passing over the
fuselage is also reaching the microphone. A sensor is measuring the noise of
the wind on the outside of the plane. You want to estimate the wind noise
inside the cockpit and subtract it from the input to the microphone so that
only the pilot’s voice is transmitted. In this chapter, you first learn how to
model the low frequency noise that is reaching the microphone. Later, you
learn how to remove this noise so that only the pilot’s voice is heard.

In this topic, you use a Digital Filter Design block to create low frequency
noise, which models the wind noise inside the cockpit:

1 If the model you created in “Modifying Your Model” on page 3-12 is not
open on your desktop, you can open an equivalent model by typing

doc_gstut3

at the MATLAB command prompt. This model contains a Scope block that
displays the original sine wave and the sine wave with white noise added.

Digital Filters

~lolx|

File Edit View Simulaton Format Tools Help

O HES| s BER|E= 4|52 =fice N

IR |
e d

Sine Wawve

[]

Scope

X ;

Rancdom
Soumre

Ready |100% | | [FixedstepDiscrets &

2 Open the Signal Processing Blockset library by typing dsplib at the
MATLAB command prompt.

3 Convert white noise to low frequency noise by introducing a Digital Filter
Design block into your model. In the airplane scenario, the air passing over
the fuselage creates white noise that is measured by a sensor. The Random
Source block models this noise. The fuselage of the airplane converts this
white noise to low frequency noise, a type of colored noise, which is heard
inside the cockpit. This noise contains only certain frequencies and is more
difficult to eliminate. In this example, you model the low frequency noise
using a Digital Filter Design block. This block uses the functionality of the
Filter Design and Analysis Tool (FDATool) to design a filter.

Double-click the Filtering library, and then double-click the Filter Designs
sublibrary. Click-and-drag the Digital Filter Design block into your model.

4 Filers

=

File Edit View Simulaton Format Tools Help

O HS| & BR|(E= 422 =fice | Noma

Ikl

] | gl
Sine Wawe »

Scope

v S
Random

Soume

Diigital
Filker Design
Ready |100% | | [FixedstepDiscrets

4 Set the Digital Filter Design block parameters to design a lowpass filter
and create low frequency noise. Open the block parameters dialog box by
double-clicking the block. Set the parameters as follows:

* Response Type = Lowpass

¢ Design Method = FIR and, from the list, choose Window

Filter Order = Specify order and enter 31
Scale Passband — Cleared

Window = Hamming

¢ Units = Normalized (0 to 1)

®* we=0.5

Based on these parameters, the Digital Filter Design block designs a
lowpass FIR filter with 32 coefficients and a cutoff frequency of 0.5. The

block multiplies the time-domain response of your filter by a 32 sample
Hamming window.

Digital Filters

5 Click Design Filter at the bottom center of the dialog box to view the
magnitude response of your filter in the Magnitude Response pane. The
Digital Filter Design dialog box should now look similar to the following

figure.
) Block Parameters: Digital Filter Design - 1Ol x|
File Edit Analysis Targets View Window Help
DeESR|(ARLLX|URMIMNN# 40 Bk @R N
— Current Fitter Information — Magnitude Response (dE)
0
Structure: Direct-Form FIR R hRE IR e PR e e e
Oreler: ki % |
Stable: Yes E T O U S SR SO SO AU B
Source; Designed %
=1
S N M.
T |
Store Fiter . I 0 0.3 0.4 0.5 0.6 0.7
- Mormalized Frequency (== rad/sample)
Fiter Manager ... I
_ Response Type — Filter Order _ Fregquency Specifications — Magnitude Specifications

r—
BN

[ZE|
L]

]

& |Lowpass vl
" |Highpass vl

{~ Bandpass
{~ Bandstop

" |pifferentiator -
| Design Methad

IR IEluﬂerworth vl
= FIR |\mndow vl

€ Minimum arder

Lnits: INormaIized (0to1) = l

— Options
[~ Scals Passhand

Wirco: IHamming vl
Fumetion Marmes; I
View |

Patametet:

WG

The attenuation st cutoff
frequencies iz fixed at 6 dB

(half the passhand gain)

Design Filter |

IDesigning Filter ... Done

You have now designed a digital lowpass filter using the Digital Filter Design
block.

You can experiment with the Digital Filter Design block in order to design a
filter of your own. For more information on the block functionality, see the
Digital Filter Design block reference page. For more information on the Filter

4-5

4 Filers

Design and Analysis Tool, see “FDATool: A Filter Design and Analysis GUI”
in the Signal Processing Toolbox documentation.

Adding a Digital Filter to Your Model

In this topic, you add the lowpass filter you designed in “Designing a Digital
Filter” on page 4-2 to your block diagram. Use this filter, which converts
white noise to colored noise, to simulate the low frequency wind noise inside
the cockpit:

1 If the model you created in “Designing a Digital Filter” on page 4-2 is not
open on your desktop, you can open an equivalent model by typing

doc_gstut4

at the MATLAB command prompt.

i)

File Edit View Simulation Format Tools Help

DS EHS| 5 BR|E== 4|22 » =fico |Noma

T

Sine Wawve

il g
FOA Tool

Random
Soume w -

Digital
Filkar De=ign

Scope

Ready [100% |FixedStepDiscrete

Digital Filters

2 Incorporate the Digital Filter Design block into your block diagram by
placing it between the Random Source block and the Sum block.

[=] doc_gstuta * =10l x|

File Edit WView Simulaton Format Tools Help

O @ H&| %2R (= 2@ b n00 | [Nom

i
Y | g
Sine Wawve »
Scope
FOA Tool
WA
Random
Soume Cigital
Filber Design
Ready |100% | | [FixedStepDiscrete v

3 Run your model and view the results in the Scope window. This window
shows the original input signal and the signal with low frequency noise
added to it.

4 Filers

4-8

L=
SHE|OLH MEE BAF

Signal

Time offset: 0

You have now built a digital filter and used it to model the presence of colored
noise in your signal. This is analogous to modeling the low frequency noise
reaching the microphone in the cockpit of the aircraft. Now that you have
added noise to your system, you can experiment with methods to eliminate it.

Adaptive Filters

Adaptive Filters

In this section...

“Designing an Adaptive Filter” on page 4-9
“Adding the Adaptive Filter to Your Model” on page 4-14
“Viewing the Coefficients of Your Adaptive Filter” on page 4-19

Designing an Adaptive Filter

Adaptive filters track the dynamic nature of a system and allow you to
eliminate time-varying signals. The Signal Processing Blockset libraries
contain blocks that implement least-mean-square (LMS), Block LMS, Fast
Block LMS, and recursive least squares (RLS) adaptive filter algorithms.
These filters minimize the difference between the output signal and the
desired signal by altering their filter coefficients. Over time, the adaptive
filter’s output signal more closely approximates the signal you want to
reproduce.

In this topic, you design an LMS adaptive filter to remove the low frequency
noise in your signal:

1 If the model you created in “Adding a Digital Filter to Your Model” on page
4-6 1s not open on your desktop, you can open an equivalent model by typing

doc_gstutb

at the MATLAB command prompt.

4 Filers

[Z] doc_gstuts =lolx|

File Edit WView Simulaton Format Tools Help

DIEd&| 2R 4 (<2 » mi00 [Nl

il
Y | ™[]
Sine Wawve »
Scope
FDA Tool
Random —
Soume Cigital
Filkar Design
Ready [100% | | [FixedStepDiscrete 4

2 Open the Signal Processing Blockset library by typing dsplib at the
MATLAB command prompt.

3 Remove the low frequency noise from your signal by adding an LMS
Filter block to your system. In the airplane scenario, this is equivalent
to subtracting the wind noise inside the cockpit from the input to the
microphone. Double-click the Filtering sublibrary, and then double-click
the Adaptive Filters library. Add the LMS Filter block into your model.

4-10

Adaptive Filters

5] doc_gstuts * =18 x|
File Edit Wview Simulation Format Tools Help
DEHE |+ BR|e b (2

b = I1E.E IN:::rmaI

i

Y =
Sine Wave
Scopea
FOA Tool
]
Random —
Sours F_MD%’:”_
teresan Ciutput
Input
LKS Ermorf
Dasird Wits [
LIS Filber
Ready |100% | | [FixedstepDiscrete v

4 Set the LMS Filter block parameters to model the output of the Digital
Filter Design block. Open its dialog box by double-clicking the block. Set

the block parameters as follows:
¢ Algorithm = Normalized LMS

Filter length = 32

Specify step size via = Dialog

Step size (mu) = 0.1

Leakage factor (0 to 1) = 1.0

Initial value of filter weights = 0

4-11

4 Filers

e (Clear the Adapt port check box.
* Reset port = None
e Select the Output filter weights check box.
The LMS Filter dialog box should now look like the following figure:

4-12

Adaptive Filters

=] Function Block Parameters: LMS Filter x|

—LMS Filter

Adapts the filter weights based on the chosen algarithm for filtering of the input
signal.

Select the Adapt port check box to create an Adapt port on the block, When the
input to this part is nonzero, the block continuously updates the filter weights.
When the input to this portis zero, the filter weights remain constant.

If the Reset part is enabled and a reset event occurs, the block resets the filter
weights to their initial values.

Main | Fixed—pnintl

—Parameters

Algorithm: IN-:urmaIizEd LMS ;I

Filter length: I 32

Specify step size via: IDiaI-:ug ;I

Step size (mu): IEI. 1

Leakage factor (0to 1): | 1.0

Initial value of filter weights: IIII

[T Adapt port

Reset port: INDnE ;I

W output filter weights

K Cancel Help Apply

5 Click Apply.

4-13

4 Filers

4-14

Based on these parameters, the LMS Filter block computes the filter weights
using the normalized LMS equations. The filter order you specified is the
same as the filter order of the Digital Filter Design block. The Step size (mu)
parameter defines the granularity of the filter update steps. Because you set
the Leakage factor (0 to 1) parameter to 1.0, the current filter coefficient
values depend on the filter’s initial conditions and all of the previous input
values. The initial value of the filter weights (coefficients) is zero. Since you
selected the Output filter weights check box, the Wts port appears on the
block. The block outputs the filter weights from this port.

Now that you have set the block parameters of the LMS Filter block, you can
incorporate this block into your block diagram.

Adding the Adaptive Filter to Your Model

In this topic, you recover your original sinusoidal signal by incorporating the
adaptive filter you designed in “Designing an Adaptive Filter” on page 4-9
into your system. In the aircraft scenario, the adaptive filter models the low
frequency noise heard inside the cockpit. As a result, you can remove the
noise so that the pilot’s voice is the only input to the microphone:

1 If the model you created in “Designing an Adaptive Filter” on page 4-9 is
not open on your desktop, you can open an equivalent model by typing

doc_gstut6

at the MATLAB command prompt.

Adaptive Filters

] doc_gstuts -1o| x|

File Edit View Simulation Format Tools Help

DeH&| 2 E2R|E= 4= & p 1o |[|Nomal

| |:-SF'
Y. | =
Sine Wawve
Scope
FOA Tl
[,
Random —
Soume] E'Q"J'. Input Cutput B
Filter Dezign Normalized
LIS Emorf
Degired Wis B
LIS Filber
Ready |100% | | [FixedstepDiscrate

2 Add a Sum block to your model to subtract the output of the adaptive filter
from the sinusoidal signal with low frequency noise. From the Simulink
Math Operations library, drag a Sum block into your model. Open the
Sum dialog box by double-clicking this block. Change the List of signs
parameter to |+- and then click OK.

3 Incorporate the LMS Filter block into your system.

a Connect the output of the Random Source block to the Input port of the
LMS Filter block. In the aircraft scenario, the random noise is the white
noise measured by the sensor on the outside of the airplane. The LMS
Filter block models the effect of the airplane’s fuselage on the noise.

b Connect the output of the Digital Filter Design block to the Desired port
on the LMS Filter block. This is the signal you want the LMS block to

reproduce.

4-15

4 Filers

¢ Connect the output of the LMS Filter block to the negative port of the
Sum block you added in step 2.

d Connect the output of the first Sum block to the positive port of the
second Sum block. Your model should now look similar to the following
figure.

=] doc_gstute * =10 x|

File Edit Wiew Simulation Formak Tools Help

D|ﬁn@|%ﬂ|¢==ﬁ>‘]}|fﬁr_’|b II1EI.EI IN:::rmaI

i
| 4 | >
Sine WMiave >
Scope
FOATool
Random —
Source Crigital
Filter Dresign
| Input Cutput
Mormalized
LMS Erorp
L Cresired Yidts b
Lh5 Filter
Ready |100% | | [FixedstepDiscrete v

The positive input to the second Sum block is the sum of the input signal
and the low frequency noise, s(n) + y. The negative input to the second Sum
block is the LMS Filter block’s best estimation of the low frequency noise,

4-16

Adaptive Filters

y’. When you subtract the two signals, you are left with an approximation
of the input signal.

$(Mgpprox =M +y -y’

In this equation:

® s(n) is the input signal

8(n) gpprox 1S the approximation of the input signal

® yis the noise created by the Random Source block and the Digital Filter
Design block

® y’is the LMS Filter block’s approximation of the noise

Because the LMS Filter block can only approximate the noise, there is still
a difference between the input signal and the approximation of the input
signal. In subsequent steps, you set up the Scope block so you can compare
the original sinusoidal signal with its approximation.

4 Add two additional inputs and axes to the Scope block. Open the Scope
dialog box by double-clicking the Scope block. Click the Parameters
button. For the Number of axes parameter, enter 4. Close the dialog
box by clicking OK.

5 Label the new Scope axes. In the Scope window, right-click on the third
axes and select Axes properties. The Scope properties: axis 3 dialog box
opens. In the Title box, enter Approximation of Input Signal. Close
the dialog box by clicking OK. Repeat this procedure for the fourth axes
and label it Error.

6 Connect the output of the second Sum block to the third port of the Scope
block.

7 Connect the output of the Error port on the LMS Filter block to the fourth
port of the Scope block. Your model should now look similar to the following
figure.

4-17

4 Filers

4-18

L=] doc_gstuts * =10 x|

File Edit WView Simulation Format Tools Help

DeH&| 2R e 4 <2 pr 1o ||Noma

| FSF’
<
| & >
Sine Wawve i
Scope
FLA Tool
Random —
Soume Cigital
Filter Dasign
o Input Crutput
Mormalized
LIS Ermor
e Dasied Wis b
LMS Filtar
Ready |100% | | [FixedstepDiscrete

In this example, the output of the Error port is the difference between the
LMS filter’s desired signal and its output signal. Because the error is never
zero, the filter continues to modify the filter coefficients in order to better
approximate the low frequency noise. The better the approximation, the more
low frequency noise that can be removed from the sinusoidal signal. In the
next topic, “Viewing the Coefficients of Your Adaptive Filter” on page 4-19,
you learn how to view the coefficients of your adaptive filter as they change
with time.

Adaptive Filters

Viewing the Coefficients of Your Adaptive Filter

The coefficients of an adaptive filter change with time in accordance with a
chosen algorithm. Once the algorithm optimizes the filter’s performance,
these filter coefficients reach their steady-state values. You can view the
variation of your coefficients, while the simulation is running, to see them
settle to their steady-state values. Then, you can determine whether you can
implement these values in your actual system:

1 If the model you created in “Adding the Adaptive Filter to Your Model” on
page 4-14 is not open on your desktop, you can open an equivalent model
by typing

doc_gstut?7

at the MATLAB command prompt. Note that the Wts port of the adaptive
filter, which outputs the filter weights, still needs to be connected.

4-19

4 Filers

7] doc_gstut7

File Edit WView Simulation Format Tools Help

=10 x|

O EHE| % =Rt 2@ a0 |[vom

i
<
| &/ >
Sine Wave S
Scope
FOATool
Randaorm —
Soume Cigital
Filter Design
| Input Cutput
Normalized
LIS Ermor
3 Dasied Wiz b
LIS Filter
Ready |100% | | [FixedstepDiscrete

2 Open the Signal Processing Blockset library by typing dsplib at the
MATLAB command prompt.

3 View the filter coefficients using a Vector Scope block from the Signal
Processing Sinks library.

4 Open the Vector Scope dialog box by double-clicking the block. Set the
block parameters as follows:

a Click the Scope Properties tab.

4-20

Adaptive Filters

¢ Input domain = Time

¢ Time display span (number of frames) = 1
b Click the Display Properties tab.

e Select the following check boxes:

Show grid

- Frame number

= Compact display

= Open scope at start of simulation

Click the Axis Properties tab.

0

® Minimum Y-limit = -0.2

¢ Maximum Y-limit =0.6

® Y-axis label = Filter Weights
d Click the Line Properties tab.

¢ Line visibilities = on

¢ Line style = :

* Line markers =.

® Line colors =[0 0 1]

e Click OK.

5 Connect the Wts port of the LMS Filter block to the Vector Scope block.

4-21

4 Filers

4-22

[Z] doc_gstut7 * =10 x|

File Edit WView Simulation Format Tools Help

D EHE| 4 =Rt 22> =00 [l

Il
<[
| W >
Sine Wawe i
Scopea
FLA Tool
Random —
Soume Digital
Filter Design
o Input Crutput
Mo malized
LIS Ermor
L pfoeed [
Time
LKMS Filberr
Wector
Scope
Ready |100% | [FixedstepDiscrete

6 Set the configuration parameters:

a Open the Configuration Parameters dialog box by selecting
Configuration Parameters from the Simulation menu, and navigate
to the Solver pane.

b Enter inf for the Stop time parameter.
¢ Choose Fixed-step from the Type list.

d Choose Discrete (no continuous states) from the Solver list.

Adaptive Filters

We recommend these configuration parameters for models that contain
Signal Processing Blockset blocks. Because these blocks calculate values
directly rather than solving differential equations, you must configure the
Simulink Solver to behave like a scheduler. The Solver, while in scheduler
mode, uses a block’s sample time to determine when the code behind each
block is executed. For example, the sample time of the Sine Wave and
Random Source blocks in this model is 0.05. The Solver executes the code
behind these blocks, and every other block with this sample time, once
every 0.05 second.

Note When working with models that contain Signal Processing Blockset
blocks, use source blocks that enable you to specify their sample time. If
your source block does not have a Sample time parameter, you must add a
Zero-Order Hold block in your model and use it to specify the sample time.
For more information, see “Continuous-Time Source Blocks” in the Signal
Processing Blockset User’s Guide. The exception to this rule is the Constant
block, which can have a constant sample time. When it does, Simulink
executes this block and records the constant value once, which allows for
faster simulations and more compact generated code.

7 Close the dialog box by clicking OK.
8 Open the Scope window by double-clicking the Scope block.

9 Run your model and view the behavior of your filter coefficients in the
Vector Scope window, which opens automatically when your simulation
starts. Over time, you see the filter coefficients change and approach their
steady-state values, shown below.

4-23

4 Filers

4-24

RI=TE
AR PX

15

-

+1.4 :

403 .

+1.2 : :

P
+1.1 '
oo ; P
-Hl“""'" REET _*\\,,I \“\ .'I IIL ;r \\1;, + o B
Y|l L4
0.1 4 ¥
Frarme: | 3566
0 5 10 15 20 25 a0 36 40 45

You can simultaneously view the behavior of the system in the Scope
window. Over time, you see the error decrease and the approximation of
the input signal more closely match the original sinusoidal input signal.

Adaptive Filters

Cscope TP
EIEEEEEEE R

Sighal

Appraximation of [nput Signal

Error

You have now created a model capable of adaptive noise cancellation. So
far, you have learned how to design a lowpass filter using the Digital Filter
Design block. You also learned how to create an adaptive filter using the
LMS Filter block. The Signal Processing Blockset product has other blocks
capable of designing and implementing digital and adaptive filters. For more
information on the filtering capabilities of this product, see “Filters” in the
Signal Processing Blockset User’s Guide.

Because all blocks in this model have the same sample time, this model is
single rate and Simulink ran it in SingleTasking solver mode. If the blocks
in your model have different sample times, your model is multirate and
Simulink might run it in MultiTasking solver mode. For more information on
solver modes, see “Recommended Settings for Discrete-Time Simulations” in
the Signal Processing Blockset User’s Guide.

In Chapter 5, “Code Generation”, you use the Real-Time Workshop product
to generate code from your model.

4-25

4 Filers

4-26

Code Generation

¢ “Understanding Code Generation” on page 5-2

® “Generating Code” on page 5-4

5 Code Generation

Understanding Code Generation

5-2

In this section...

“Code Generation with the Real-Time Workshop Product” on page 5-2
“Highly Optimized Generated ANSI C Code” on page 5-3

Code Generation with the Real-Time Workshop

Product

You can use the Signal Processing Blockset, Real-Time Workshop, and
Real-Time Workshop® Embedded Coder™ products together to generate
code that you can use to implement your model for a practical application.
For instance, you can create an executable from your Simulink model to run
on a target chip.

This chapter introduces you to the basic concepts of code generation
using these tools. For more information on code generation, see “Building
Executables” in the Real-Time Workshop documentation.

Shared Library Dependencies

For the blocks listed in the table below, copy the shared library files from the
machine where the blockset software is installed to a folder on the system
path of the destination machine.

Block Dependent library file

To Multimedia File tommfile.dll
SldirectShow.dll

From Multimedia File frommmfile.dll
SldirectShow.dll

To Audio Device libaudiodevice.dll
libportaudio.dll

From Audio Device libaudiodevice.dll
libportaudio.dll

Understanding Code Generation

Highly Optimized Generated ANSI C Code

All Signal Processing Blockset blocks generate highly optimized ANSI C code.
This C code is often suitable for embedded applications, and includes the
following optimizations:

¢ Function reuse (run-time libraries) — The generated code reuses
common algorithmic functions via calls to run-time functions. Run-time
functions are highly optimized ANSI/ISO C functions that implement
core algorithms such as FFT and convolution. Run-time functions are
precompiled into ANSI/ISO C run-time libraries, and enable the blocks to
generate smaller, faster code that requires less memory.

¢ Parameter reuse (Real-Time Workshop run-time parameters) — In
many cases, if there are multiple instances of a block that all have the
same value for a specific parameter, each block instance points to the same
variable in the generated code. This process reduces memory requirements.

¢ Blocks have parameters that affect code optimization — Various
blocks, such as the FFT and Sine Wave blocks, have parameters that
enable you to optimize the simulation for memory or for speed. These
optimizations also apply to code generation.

¢ Other optimizations — Use of contiguous input and output arrays,
reusable inputs, overwritable arrays, and inlined algorithms provide
smaller generated C code that is more efficient at run time.

5-3

5 Code Generation

Generating Code

In this section...

“Setting Up the Build Folder” on page 5-4
“Setting Configuration Parameters” on page 5-5

“Generating Code” on page 5-10

“Viewing the Generated Code” on page 5-11

Note You must have both the Signal Processing Blockset and Real-Time
Workshop products installed on your computer to complete this section’s
procedures.

Setting Up the Build Folder

First, you need to create a filter folder and put a local copy of your model in
it. The Real-Time Workshop software creates a build folder within this filter
folder during code generation. The build folder name is model target_rtw,
derived from the name of the source model and the selected target. The build
folder contains generated source code and other files created during the build
process. This procedure assumes that your filter folder resides on drive D:
(PC) or your home folder (UNIX):

1 Set up your filter folder by typing

Imkdir d:\filter_example
on a PC, or

!mkdir ~/filter_example
on UNIX.

The “!” character passes the command that follows it to the operating
system, which creates the folder.

2 Make this your working folder by typing cd d:\filter_example.

Generating Code

3 If the model you created in “Viewing the Coefficients of Your Adaptive
Filter” on page 4-19 is not open on your desktop, you can open an equivalent
model by typing

doc_gstut8

at the MATLAB command prompt.

4 Save this model as gstut8.mdl in your new working folder.

Setting Configuration Parameters
Before you can generate code, you must set several model parameters using

the Configuration Parameters dialog box. To learn how to configure your
model and Real-Time Workshop product settings so that your generated code
accurately reflects your system, see the following topics:

e “Selecting a Solver Algorithm” on page 5-5

e “Selecting a Target Configuration” on page 5-6

® “Controlling Other Code Generation Options” on page 5-9

In these procedures, you continue to work with gstut8.mdl, the model you
saved in your working folder in “Setting Up the Build Folder” on page 5-4.

Selecting a Solver Algorithm
Specify parameters that enable Simulink software to solve your model:

1 Open the Configuration Parameters dialog box for this model by selecting
Configuration Parameters from the Simulation menu.

2 In the Select pane, click Solver. Set the parameters as follows:
e Start Time = 0.0
e Stop Time =60.0
e Type = Fixed-step

e Solver =Discrete (no continuous states)

Fixed step size (fundamental sample time) = 0.01

5-5

5 Code Generation

¢ Tasking mode for periodic sample times = SingleTasking

3 Click Apply.

When you are finished setting the parameters, the Solver pane should look
similar to the following figure.

#, Configuration Parameters: doc_gstut8/Configuration (Active) x|
Select — Simulation tim =
- Solver . .
Start time: 0.0 Stap time: | GO0
- [ata Import/E sport arime I EAMIOS I
D!:ut|m|2at.|on — Solver options
[=- Diagnostics
i Sample Time T_I,JDBZIFi:-:Bd-StEp ;I Solver:ldiscrete [no continuous states] ;I
Fined-zstep size (fundamental zample time); I 0o
— Tazking and sample time options
Periodic sample time constraint: IUnconstrained LI
- Hardware Implementation T azking mode for periodic sample times: ISingIeTasking LI
- Model Heferencmg [Automatically handle rate transition for data transfer
= Real-Time Waorkshop o
; Determinizm of data transfer: [Auto ;I
™ Higher priority value indicates higher task priority
hd|

J Ok I Cancel Help | Apply |

Selecting a Target Configuration

All Signal Processing Blockset blocks support the following code generation
targets:

® Generic Real-Time (GRT) target
® Embedded Real-Time (ERT) target

Generating Code

The MathWorks supplies the Generic Real-Time (GRT) target with the
Real-Time Workshop product. This target uses the real-time code format and
supports external mode communication. You can use this target as a starting
point when creating a custom rapid prototyping target, or for validating the
generated code on your workstation.

The MathWorks supplies the Embedded Real-Time (ERT) target
with the Real-Time Workshop Embedded Coder product. This
target configuration generates model code for execution on an
independent embedded real-time system. For more information, see
http://www.mathworks.com/products/rtwembedded/.

A target configuration consists of system target file, a template makefile, and
a make command. In most situations, rather than specifying these parameters
individually, you use the ready-to-run generic real-time target configuration.
This GRT target is designed to build a stand-alone executable program that
runs on your workstation:

1 If you have not already done so, open the Configuration Parameters dialog
box. In the Select pane, click Real-Time Workshop.

5-7

http://www.mathworks.com/products/rtwembedded/

5 Code Generation

#, Configuration Parameters: doc_gstut8/Configuration (Active)

Select:

- Solver

- [ata Impart/E sport
- [phimization

[=- Diagnostics

- Sample Time

- [1aka W alidity

- Ty Corvverzion
- Connectivity

- Compatibility

- bl ndel Referencing
- 5 aving

ardware Implementation
odel Referencing
eal-Tirme W

- Repoart

- Comments

- Syumbals

- Cuztom Code

- Debug

- |nterface

— Target zelection

Browsze. . |

Syztem target file: I artte
5

I

Languane:

— Build process

Compiler optimization lewvel: I Optimizations off [faster builds] j

TLLC optionz: I
td ak efile configuration

¥ Generate makefile

td ake command: Imake_rtw

Template makefile: I art_default_trf

[Generate code only

Build |

o |

Cancel Help | Apply

b |x

2 Make sure that the Generate code only check box is not selected. If you
select this check box, the Real-Time Workshop product does not generate
an executable after it has created source code.

3 Select a target configuration. If the System target file is not already
specified as grt.tlc, open the System target file browser dialog box by
clicking Browse next to the System target file box. The System target

file browser displays a list of all currently available target configurations.

When you select a target configuration, the appropriate system target file,
template makefile, and make command are automatically chosen.

From the list of available configurations, select Generic Real-Time
Target and then click OK.

Generating Code

[Z]system target file browser: gstuts 2=
System target file: Description:
asaps._tlec ABAM-ABAPF Data Definition Target -
cles_ tle Embedded Target for Infineon Cleg® Microc
ert_tlc BTW Embedded Coder i(no aubo configuration
ert_tlc BTW Embedded Coder i{auto confipures for
ert_tlc BTW Embedded Coder {auto confipures for c
ert_tlec Tisual CfC++ Project Makefile only for tk
: Generic Beal-Time Target
grt_tle Tisual CfC++ Project Makefile only for tk
grt_malloc.tlec Generic Beal-Time Target with dynamic men ™
4| | »
Full narme: I:hperfecthmatlabhbwicharthart. te

Template make file: qrt_default_trf
Make command: make_ttw

Ok LCancel | Help | Apply |

The Real-Time Workshop pane now displays the correct system target
file (grt.tlc), make command (make_rtw). and template makefile
(grt_default_tmf).

Controlling Other Code Generation Options

There are a number of additional options that you can set using the
Configuration Parameters dialog box:

1 If you have not already done so, open the Configuration Parameters dialog
box.

2 Prevent data from being logged to the MATLAB workspace. In the Select
pane, click Data Import/Export, and then clear the Time and Output
check boxes. These check boxes control whether or not the respective
variables are sent to the workspace.

3 Create a navigable summary of source files when the model is built. In the
Select pane, expand Real-Time Workshop. Click Report, and select the
Create Code Generation report and Launch report automatically
check boxes.

4 Make blocks that were eliminated as a result of optimizations appear as
comments in the generated code. In the Select pane, expand Real-Time

5 Code Generation

Workshop. Click Comments, and then select the Show eliminated
blocks check box.

5 View progress information during code generation. In the Select pane, click
Debug, and then select the Verbose build check box. When this option is
selected, the MATLAB Command Window displays progress information
during code generation. The compiler also reports its progress there.

6 Apply these settings and close this dialog box by clicking OK.

7 Save the model in your working folder. Your configuration parameters are
saved within the model file.

Once you have configured your model, you are ready to generate code.

Generating Code

After you set the configuration parameters, you can generate code from your
model. In this procedure, you continue to work with gstut8.mdl, the model
you saved in your working folder in “Setting Configuration Parameters” on
page 5-5:

1 Open the Configuration Parameters dialog box. In the Select pane, click
Real-Time Workshop.

2 To start the build process, click Build on the Real-Time Workshop pane.
A number of messages concerning code generation and compilation appear
in the MATLAB Command Window. The initial messages are

Starting Real-Time Workshop build procedure for model: gstut8
Generating code into build folder:
d:\filter_example\gstut8_grt_rtw

The content of the succeeding messages depends on your compiler and
operating system. The final message is

Successful completion of Real-Time Workshop build procedure for model: gstut8
3 Type dir at the MATLAB command prompt. The working folder now

contains a build folder, gstut8_grt_rtw, which the Real-Time Workshop
product created. The generated source files are in this folder.

5-10

Generating Code

You have now generated code from your signal processing model file.

Viewing the Generated Code

Once you have generated code from your Simulink model, you can view this
code in an HTML report. You asked for this report by selecting the Create
code generation report check box. The HTML report is a navigable
summary of source files that you can view in the Report window:

1 View the code automatically generated by the Real-Time Workshop
product. Select the Real-Time Workshop Report window. Use the links
on the left side of the report to view the different source and header files
that were generated.

2 To display one of the generated files, click the gstut8.c link in the
Generated Source Files list. The generated code appears as an HTML file
in the right side of the Real-Time Workshop Report window. The Real-Time
Workshop product produces an HTML file for each source file in a folder
named \html within the build folder.

5-11

5 Code Generation

5-12

E! Real-Time Workshop Report

21x]

Contents
Surmary
Subsystems

Code mapping
Code reuse exceptions

Generated Source
Files

Zetutd c

zatut® datac
tt_nonfinite. ¢
gstutB.h

gstutE private h
Zetut® typesh
ttnonfinite b
tmodelh

rwtypes.h

Links to source and
header files

File: d:'filter example'gstutd @t rtw/gstuts.c

[RN T N TR N LI W Y

R S e e T T o T o S
FLoCyo'go0p o] Oh thode Wy ba k2 O o

22

[
L)

4

L
* getutf.c
*
REeal-Time Workshop code gerneration Ffor Simulink model "gstutfomdl"”.
3
Model Version 1.10
Real-Time Workshop version : 6.0 (REil4 Prerelease) Z22-Mar-2004
* O source code gexnerated on @ Tue Mapr 30 10:30:51 2004
=

H#include "gstutS.h"
#include "gstutd private.h”

A% Block signals (auto storage) =7
ElockIO gstutd gstutd E;

A% Block states (auto storage) =/

D_Work gstutf gstutd Dilork: Selected files

appear in this pane

| of

/* Real-time model */

reModel gstutd gstucd M -
rtModel gstuts *gstutd M = cgstutd M

[x|

Cancel | Help | Apply

You have now generated ANSI/ISO C code from your signal processing model
and viewed this code in an HTML report. For more information on code
generation, see the Real-Time Workshop documentation. For information

on generating fixed-point code, refer to “Code Generation” in the Simulink
Fixed Point documentation.

Frequency Domain Signals

® “Power Spectrum Estimates” on page 6-2

® “Spectrograms” on page 6-12

6 Frequency Domain Signals

Power Spectrum Estimates

In this section...

“Creating the Block Diagram” on page 6-2
“Setting the Model Parameters” on page 6-3

“Viewing the Power Spectrum Estimates” on page 6-9

Creating the Block Diagram

Up until now, you have been dealing with signals in the time domain. The
Signal Processing Blockset product is also capable of working with signals
in the frequency domain. You can use the software to perform fast Fourier
transforms (FFTs), power spectrum analysis, short-time FFTs, and many
other frequency-domain applications.

The power spectrum of a signal represents the contribution of every frequency
of the spectrum to the power of the overall signal. It is useful because

many signal processing applications, such as noise cancellation and system
identification, are based on frequency-specific modifications of signals.

First, assemble and connect the blocks needed to calculate the power spectrum
of your speech signal:

1 Open a new Simulink model.

2 Add the following blocks to your model. Subsequent topics describe how
to use these blocks.

Block Library

Signal From Workspace Signal Processing Sources

Buffer Signal Management / Buffers

Periodogram Estimation / Power Spectrum
Estimation

Vector Scope Signal Processing Sinks

3 Connect the blocks as shown in the next figure.

Power Spectrum Estimates

—ipix]

File Edit View Simulation Format Tools Help

DeE& &+ 2R c= 4222 p =5 fioo [Nomal -

Y
Y

Y

Time

T

Signal From

iofsp ace Buffer Feriodogram Wectar

Scope

Ready 100%;: FixedStepDiscrete
A

Once you have assembled the blocks needed to calculate the power spectrum
of your speech signal, you can set the block parameters.

Setting the Model Parameters

Now that you have assembled the blocks needed to calculate the power
spectrum of your speech signal, you need to set the block parameters. These
parameter values ensure that the model calculates the power spectrum of
your signal accurately:

1 If the model you created in “Creating the Block Diagram” on page 6-2 is not
open on your desktop, you can open an equivalent model by typing

doc_gstut9

at the MATLAB command prompt.

2 Load the speech signal into the MATLAB workspace by typing load mtlb
at the MATLAB command prompt. This speech signal is a woman’s voice
saying “MATLAB.”

3 Use the Signal From Workspace block to import the speech signal from
the MATLAB workspace into your Simulink model. Open the Signal

6-3

6 Frequency Domain Signals

From Workspace dialog box by double-clicking the block. Set the block
parameters as follows:

e Signal = mtlb
* Sample time = 1/8000
e Samples per frame = 80

* Form output after final data value by = Setting to zero

Once you are done setting these parameters, the Signal From Workspace
dialog box should look similar to the figure below. Click OK to apply your
changes.

E! Block Parameters: Signal From YWorkspace x|

—Signal From "W orkspace [mask] (link]

Output zignal zamples obtained from the MATLAE workspace at successive sample
times. A zighal matriz is interpreted as having one channel per column. Signal
columne may be buffered into frames by specifying a number of samples per frame
areater than 1.

An b N % P zignal array outputs M = M matrices at successive sample times. The
zamples per frame must be equal to 1 for 3 dimenzional zignal arays.

—Parameters
Signal:
ImtIH
Sample time:

f1/2000

Samples per frame:
fao

Form output after final data walue by I Setting to zero ;I

0K I LCancel | Help |

The Signal Processing Blockset product is capable of frame-based
processing. In other words, Signal Processing Blockset blocks can process
multiple samples of data at one time. This improves the computational
speed of your model. In this case, by setting the Samples per frame
parameter to 80, you are telling the Signal From Workspace block to output
a frame that contains 80 signal samples at each simulation time step. Note

Power Spectrum Estimates

that the sample period of the input signal is 1/8000 seconds. Also, after the
block outputs the final signal value, all other outputs are zero.

4 Use the Buffer block to buffer the input signal into frames that contain 128
samples. Open the Buffer dialog box by double-clicking the block. Set the
block parameters as follows:

¢ Output buffer size (per channel) = 128
¢ Buffer overlap = 48
¢ Initial conditions =0

Once you are done setting these parameters, the Buffer dialog box should
look similar to the figure below. Click OK to apply your changes.

[]Block Parameters: Buffer |

—Buffer [maszk] [link]

Convert scalar zamples to a frame output at & lower sample rate. “'ou can also convert
a frame to a zmaller or larger size with optional overlap.
Far calculation of sample delay, see the rebuffer_delay function.

—Parameters

COutput buffer zize [per channel]:
|128

Buffer averlap:
|48
Ikitial conditions:
i

ok | caneal] aoty |

Based on these parameters, the first output frame contains 48 initial
condition values followed by the first 80 samples from the first input frame.
The second output frame contains the last 48 values from the previous
frame followed by the second 80 samples from the second input frame,
and so on. You are buffering your input signal into an output signal with
128 samples per frame to minimize the estimation noise added to your
signal. Also, because 128 is a power of 2, this operation optimizes the FFT
performed by the Periodogram block.

6 Frequency Domain Signals

5 Use the Periodogram block to compute a nonparametric estimate of the
power spectrum of the speech signal. Open the Periodogram dialog box by
double-clicking the block and set the block parameters as follows:

® Measurement = Power spectral density
* Window = Hamming

* Window sampling = Periodic

Select the Inherit FFT length from input dimensions check box.

* Number of spectral averages = 2

Once you are done setting these parameters, the Periodogram dialog box
should look similar to the figure below. Click OK to apply your changes.

E Function Block Parameters: Periodogran x|

— Periodogram (mask) (link)

Power spectral density and mean-square poveer spectrum estimation via the periodogram
method and welch's averaged, modified periodogram method,

Parameters

Measurement: IF‘ower spectral density

Window: IHamming

Led Lef Lo

Window sampling: ISymmetric

¥ Inhetit FFT length From input dimensions
Murber of spectral averages:
|z

¥ Inherit sample time From input

J Ok I Cancel Help Apply

Based on these parameters, the block applies a Hamming window
periodically to the input speech signal and averages two spectra at one
time. The length of the FFT is assumed to be 128, which is the number of
samples per frame being output from the Buffer block.

6-6

Power Spectrum Estimates

6 Use the Vector Scope block to view the power spectrum of the speech signal.
Open the Vector Scope dialog box by double-clicking the block. Set the
block parameters as follows:

¢ Input domain = Frequency

Click the Axis Properties tab.

Clear the Inherit sample time from input check box.

Sample time of original time series = 1/8000

Y-axis label = Magnitude-squared, dB

Once you are done setting these parameters, the Axis Properties pane
of the Vector Scope dialog box should look similar to the figure below. As
you can see by the Y-axis scaling parameter, the decibel amplitude is
plotted in a vector scope window.

6 Frequency Domain Signals

6-8

=] sink Block Parameters: Yector Scope x|

—Meckor Scope

Display a weckor or matrix of time-domain, Frequency-domain, or user-specified data,
Each column of a 2-0 inpuk matrix is plokted as a separate data channel, 1-Dinputs are
assumed to be a single data channel,

For frequency-domain operation, input should come From a source such as the
Magnitude FFT block, or a block with equivalent data organization.

Scope Properties I Display Properties Axis Properties Line Propetties I
—Parameters

Frequency uniks: IHertz

=l
Frequency range: I[III. Fsl2] ;I

™ Inherit sample time From input

Sample time of original time series: I 1/a000

Frequency display limiks: I.ﬂ.utn:n ;l
=l

-axis scaling: Il:IB

Mirimum -l |- 10

Marcirnurn -lirmit: | 10

-axis label: Ir'-“la|;|niI:|.||:||E!-51:||.|ar|3|:|J dB

J- Ik Cancel Help apply

Because you are buffering the input with a nonzero overlap, you have
altered the sample time of the signal. As a result, you need to specify the
sample time of the original time series. Otherwise, the overlapping buffer

samples lead the block to believe that the sample time is shorter than it
actually is.

Power Spectrum Estimates

After you have set the block parameter values, you can calculate and view the
power spectrum of the speech signal.

Viewing the Power Spectrum Estimates

In the previous topics, you created a power spectrum model and set its
parameters. In this topic, you simulate the model and view the power
spectrum of your speech signal:

1 If the model you created in “Setting the Model Parameters” on page 6-3 is
not open on your desktop, you can open an equivalent model by typing

doc_gstut10

at the MATLAB command prompt.

2 Set the configuration parameters. Open the Configuration Parameters
dialog box by selecting Configuration Parameters from the Simulation
menu. Select Solver from the menu on the left side of the dialog box, and
set the parameters as follows:

e Stop time =0.5
* Type = Fixed-step

e Solver =Discrete (no continuous states)

6-9

6 Frequency Domain Signals

3 Apply these parameters and close the Configuration Parameters dialog
box by clicking OK. These parameters are saved only when you save your

4 If you have not already done so, load the speech signal into the MATLAB

5 Run the model to open the Vector Scope window. The data is not

6-10

#; Configuration Parameters: doc_gstut10/Configuration (Active) x|
Select: — Sirnulation tirne
-~ Solver X X
Start time: | 0.0 Stop time: | 0.5
- Data Import/Esport |t ime I op time I
D!:tlmlzat.lnn — Solver option:
[=- Diagnostics
-~ Sanple Time Type: I Fixed-step | Selver Idiscrete [no continuaus states) |
-+ [ata Walidity
- T ype Corwersion Fized-step size [fundamental sample time): | auta
-+ Connectivity
- Compatibility — Tasking and sample time option
- Model Ref i L . -
S:vi:g sierEneng Periodic sample tme constraint |Unconstralned LI
- Hardware Implementation Tasking made for periodic sample times: IAuto j
~Model Eeferenclng I~ Automatically handle rate hansition for data ransfer
[=1-Real-Time Workshop
- Fiepart Detemirizm of data ansfer | Auto ;I
-~ Comments ™ Higher priority value indicates higher task priority
- Symbols
Custom Code
Debug
Interface
‘)- Ok I Cancel | Help | Apply

model.

workspace by typing load mtlb.

immediately visible at the end of the simulation. To autoscale the y-axis to
fit the data, in the Vector Scope window, right-click and choose Autoscale.
The following figure shows the data displayed in the Vector Scope window.

Power Spectrum Estimates

) doc_gstut10/Yector Scope =]

File #Axes Channels Window Help a

&

Magnitude-squared, dB

0 0.5 1 1.5 2 2.5 3 2.5
Frame: &1 Frequency (kHz)

s

During the simulation, the Vector Scope window displays a series of frames
output from the Periodogram block. Each of these frames corresponds to

a window of the original speech signal. The data in each frame represents
the power spectrum, or contribution of every frequency to the power of the
original speech signal, for a given window.

In the next section, “Spectrograms” on page 6-12, you use these power
spectrums to create a spectrogram of the speech signal.

6-11

6 Frequency Domain Signals

6-12

Spectrograms

In this section...

“Modifying the Block Diagram” on page 6-12
“Setting the Model Parameters” on page 6-14
“Viewing the Spectrogram of the Speech Signal” on page 6-18

Modifying the Block Diagram

Spectrograms are color-based visualizations of the evolution of the

power spectrum of a speech signal as this signal is swept through time.
Spectrograms use the periodogram power spectrum estimation method and
are widely used by speech and audio engineers. You can use them to develop
a visual understanding of the frequency content of your speech signal while a
particular sound is being vocalized.

In the previous section, you built a model capable of calculating the power
spectrum of a speech signal that represents a woman saying “MATLAB.” In
this topic, you modify this model to view the spectrogram of your signal:

1 If the model you created in “Viewing the Power Spectrum Estimates” on
page 6-9 is not open on your desktop, you can open an equivalent model
by typing

doc_gstut11

at the MATLAB command prompt.

Spectrograms

Jl=IEY

File Edit Wiew Simulakion Format Tools Help

DEsEHES | fBER|E 1|52 » IIU.E [Womal =l

mtlh

Ready

Signal Fram
iafepace

relch
L ™
| . | . | .
Ll Ll Ll
N‘(\{\/\'\/\ Freq
Bufier Periodagram Wectar
Scope
[100% | | |FixedstepDiscrete 4

2 Add the following blocks to your model. Subsequent topics describe how

to use these blocks.

Block

Library

Selector

Simulink / Signal Routing

dB Conversion

Math Functions / Math Operations

Buffer

Signal Management / Buffers

Transpose

Math Functions / Matrices and Linear
Algebra / Matrix Operations

Matrix Viewer

Signal Processing Sinks

3 Connect the blocks as shown in the figure below. These blocks extract the
positive frequencies of each power spectrum and concatenate them into a
matrix that represents the spectrogram of the speech signal.

6-13

6 Frequency Domain Signals

EI doc_gstutll *

File Edit Wiew Simulation Format Tools Help

=101]

D|#u§|%ﬁ|<}=¢?|9@|} IID.E INDrmaI

milb

Signal From
Wokspace

Ready

Welch

o 1 o o8 | uE o 1 w7 | Matiic
bl bl bl — 1 1 ohm)y bl bl Wiemer
Buffer Perindogram Selectar 4B Comversion Blufferd Transpase b atriz
Wiewer

Freq

“ectar

Scope

[100% [|FixedstepDiscrete

6-14

Once you have assembled the blocks needed to view the spectrogram of your
speech signal, you can set the block parameters.

Setting the Model Parameters

In the previous topic, you assembled the blocks you need to view the
spectrogram of your speech signal. Now you must set the block parameters:

1 If the model you created in “Modifying the Block Diagram” on page 6-12 is
not open on your desktop, you can open an equivalent model by typing

doc_gstuti2

at the MATLAB command prompt.

2 Use the Selector block to extract the first 64 elements, or the positive
frequencies, of each power spectrum. Open the Selector dialog box by
double-clicking the block. Set the block parameters as follows:

¢ Number of input dimensions = 1

¢ Index mode = One-based

Spectrograms

® Index option = Index vector (dialog)

¢ Index =1:64

¢ Input port size = 128

At each time instance, the input to the Selector block is a vector of 128
elements. The block assigns one-based indices to these elements and
extracts the first 64. Once you are done setting these parameters, the

Selector dialog box should look similar to the figure below. To apply your
changes, click OK.

=] Function Block Parameters: Selector x|

— Selector

Select or reorder specified elements of a multidimenzional input signal. The index to each element iz identified
fram ar input port or thiz dialog, v'ou can choogze the indesing method for each dimension by using the "Index
Option' parameter.

— Parameter.

Murmber of input dimensions:

Indes maode: IDne-based :I
Index Option Index COutput Size |
1 |Index vector [dialog) ;I 1:64 Inherit from “lndes" |

Input port zize: |1 28

s
0k I Cancel | Help | Apply

3 The dB Conversion block converts the magnitude of the input FFT signal to
decibels. Leave this block at its default parameters.

4 Use the Bufferl block to concatenate the individual power spectrums into a
matrix. Open the Bufferl dialog box by double-clicking the block. Set the
block parameters as follows:

¢ Output buffer size (per channel) = 48
¢ Buffer overlap = 46

6-15

6 Frequency Domain Signals

6-16

e TInitial conditions = -70

Once you are done setting these parameters, the Bufferl dialog box should
look similar to the figure below. To apply your changes, click OK.

Z)Block Parameters: Bufferl 2=
—Buffer (magk] (link)

Convert scalar zamples to a frame output at & lower sample rate. “'ou can also convert
a frame to a zmaller or larger size with optional overlap.
Far calculation of sample delay, see the rebuffer_delay function.

—Parameters
Output buffer zize [per channel]:
J48

Buffer averlap:

|45

Initial conditions:

|70

ok LCancel | Help | Apply |

Based on these parameters, the Bufferl block buffers the 64-by-1
frame-based input signal 48 times in order to create a 64-by-48 frame-based
signal. In other words, it collects the power spectrums calculated at each
time and concatenates them into a matrix. The block then outputs the
transpose of this matrix. To ensure that your spectrogram represents
smooth movement through time, set the value of the Buffer overlap
parameter slightly less than the value of the Output buffer size (per
channel) parameter. The Initial conditions parameter represents the
initial values in the buffer; -70 represents silence.

The Transpose block transposes the input signal back to its original
orientation. Leave this block at its default parameters.

The Matrix Viewer enables you to view the spectrogram of the speech
signal. Open the Matrix Viewer dialog box by double-clicking the block.
Set the block parameters as follows:

¢ (Click the Image Properties tab.

Spectrograms

¢ Colormap matrix = jet (256)
¢ Minimum input value = -70

¢ Maximum input value = 15

Select the Display colorbar check box.

Once you are done setting these parameters, the Image Properties pane
should look similar to the figure below.

E Block parameters: Matrix Yiewer x|

b atrix Wiewer

Dizplay a matrix as an image, scaling the colormap to the specified input data range.
Colormap must be an Mx3 matrix of BGE values. Type "help graph3d" at the
MATLAR prompt for a list of predefined colormaps.

Image Properties I Apiz Properties I

—Parameters

Colormap matris: Iiet[255]

Mimimum input value: I-T-"D

b amirmunm input value: |1 5

¥ Dizplay colorbar

OF. | LCancel | Apply

Click the Axis Properties tab.

Axis origin = Lower left corner

X-axis title = Time Index

Y-axis title = Frequency Index

Colorbar title = dB Magnitude

In this case, you are assuming that the power spectrum values do not
exceed 15 dB. Once you are done setting these parameters, the Axis
Properties pane should look similar to the figure below. To apply your
changes, click OK.

6-17

6 Frequency Domain Signals

6-18

E Block parameters: Matrix Yiewer x|

b atrix Wiewer

Dizplay a matrix as an image, scaling the colomap ta the specified input data range.
Colarmap must be an N=3 matri= of BGE values. Type "help graph3d"” at the
MATLAE prompt for a ligt of predefined colormaps.

Image Properties | Aniz Properties

—Parameters

Az origin: I Laower left cormer LI

H-axiz title: ITime Index

Y-axiz title: IFrequency Index

Calorbar tithe: IdB b agnitude

Figure positian, [+ y width height]: Iget[ll'defaultfigureposition']
I &wis z00m

OF. | LCancel | Apply

After you have set the parameter values, you can calculate
spectrogram of the speech signal.

and view the

Viewing the Spectrogram of the Speech Signal

In the topic “Viewing the Power Spectrum Estimates” on page 6-9, you used a
Vector Scope block to display the power spectrum of your speech signal. In this

topic, you view the spectrogram of your speech signal using
block. The speech signal represents a woman’s voice saying

a Matrix Viewer
“MATLAB”:

1 If the model you created in “Setting the Model Parameters” on page 6-14 is
not open on your desktop, you can open an equivalent model by typing

doc_gstut13

at the MATLAB command prompt.

Spectrograms

-l
File Edit Wiew Simulation Format Tools Help
| | = EH & | & B2 IR | A= | CRN NN S | ID.E INDrmaI _:J | O ek [3) &8 5 | B EE®
Welch _""]
mtlb B B Bl L s B dB B B T B Mo atriz
= = = 1 1 ehm) = = u T wiewer
Suiulgonﬂ.zpl;lzem Bufier Peicdogram Selectar dB Conwersion Butfer] Transpose ru'!atlix
Wiewer
Frag
Wectar
Scope
[10d% [FixedStepDiscrate 4

Ready

2 Run the model. During the simulation, the Vector Scope window displays a
sequence of power spectrums, one for each window of the original speech
signal. The power spectrum is the contribution of every frequency to the

power of the speech signal.

6-19

6 Frequency Domain Signals

) doc_gstut13/Yector Scope =]

File #Axes Channels Window Help a

&

Magnitude-squared, dB

0 0.5 1 1.5 2 2.5 3 2.5
Frame: &1 Frequency (kHz)

s

The Matrix Viewer window, shown below, displays the spectrogram of
the speech signal. This spectrogram is calculated using the Periodogram
power spectrum estimation method. Note the harmonics that are visible
in the signal when the vowels are spoken. Most of the signal’s energy is
concentrated in these harmonics; therefore, two distinct peaks are visible
in the spectrogram.

6-20

Spectrograms

) doc_gstutl3/Matrix Yiewer 10| =|
File Edit Yiew Insert Tools Desktop ‘Window Help Axes a

DEES RO Ee|E 0B O

G0

&0

i
(=)

ra

(=)

()
(]
o
(]
dB Magnitude

Frequency |ndex

]

L]
o
(=]

4]
(=)

10

4 10 14 20 25 an ah 40 45
Tirne |ndes

In this example, you viewed the spectrogram of your speech signal using a
Matrix Viewer block. You can find additional Signal Processing Blockset
product examples in the Help browser. To access these examples, click
the Contents tab, double-click Signal Processing Blockset, and then
click Examples. A list of the examples in the Signal Processing Blockset
documentation appears in the right pane of the Help browser.

For information about Signal Processing Blockset demos, see “Product Demos”

on page 1-5. For additional information about Signal Processing Blockset
product functionality, see the Signal Processing Blockset User’s Guide.

6-21

6 Frequency Domain Signals

6-22

A

adaptive filtering 2-18
adaptive filters

adding to model 4-14

blocks 2-18

designing 4-9

viewing coefficients 4-19
algebra

linear 2-19
algorithms

solver 5-5

background
user’s expected 1-13
blocks
accessing directly 2-5
accessing with Simulink Library browser 2-5
links into models 5-11
Waterfall Scope 2-2
build folder
setting up 5-4

C

C code
generating 5-10
optimization 5-3

code
generating 5-4

code generation 5-4
HTML report 5-11
links to model blocks 5-11
optimization 5-3
options 5-9
overview 5-2
setting parameters 5-5
support for 2-18
targets 5-6

understanding 5-2
viewing code 5-11
with Real-Time Workshop 5-2
coefficients
of adaptive filter 4-19
Comparison of Spectral Analysis Techniques
demo 2-19
configuration parameters
setting 5-5
Configuration Parameters dialog box 5-5
creation of
adaptive filters 4-9
digital filters 4-2
spectrograms 6-12

D

data type
support 2-20
demos
Comparison of Spectral Analysis
Techniques 2-19
Help browser 1-5
LMS Adaptive Equalization 2-18
MATLAB® Central 1-11
Sample Rate Conversion 2-17
Statistical Functions 2-19
Web 1-10
design of
adaptive filters 4-9
digital filters 4-2
digital filters
adding to model 4-6
designing 4-2
displaying
coefficients of adaptive filter 4-19
documentation 1-12
generated code 5-11
power spectrum of speech signal 6-9
spectrograms 6-18

Index-1

Index

documentation H
installing 1-3 HTML reports 5-11
on system 1-12 links to model blocks 5-11
on Web 1-12
PDF 1-13
printing 1-13 I
viewing 1-12 installation
dspstartupfile documentation 1-3
editing 2-24 Signal Processing Blockset 1-3
E L
environment (system) libraries
setting up 1-3 Signal Processing Blockset 2-5
estimation linear algebra 2-19
parametric 2-19 links to model blocks 5-11
power spectrum LMS Adaptive Equalization demo 2-18
example 6-2 lowpass filters 4-2
F M
features MATLAB® Central
Signal Processing Blockset 2-16 signal processing demos 1-11
files matrices
startup 2-24 frame-based 2-12
Filter Design and Analysis Tool (FDATool) 4-2 support for 2-20
filters memory
adding to model 4-6 conserving 2-25
lowpass 4-2 modeling system behavior 2-2
fixed-point support 2-17 models
fixed-step solvers creating 3-2
setting 2-24 modifying 3-12
frame-based running 3-9
operations 2-16 multirate
signals 2-12 filtering 2-18
function reuse 5-3 processing 2-17
functions, utility
startup 2-24 N
noise

adding to signal 3-12

Index-2

Index

o

operations

frame-based 2-16

statistical 2-19
optimization

code generation 5-3
options

code generation 5-9
organization of chapters 1-13
Out block

suppressing output 2-25

P

parameter reuse 5-3
parameters
changing during simulation 2-14
code generation 5-5
configuration 5-5
estimating 2-19
model 3-6
Solver 2-24
Stop time 2-24
tuning 2-14
parametric estimation 2-19
performance
dspstartup file 2-24
power spectrum
estimation 6-2
of speech signal 6-2
viewing 6-9
printing documentation 1-13
processing
multirate 2-17

Q

quantization 2-18

Real-Time Workshop
build folder 5-4
code generation 5-2
generating code 5-4

reuse of
functions 5-3
parameters 5-3

S

Sample Rate Conversion demo 2-17
selection of
target configurations 5-6
setting
code generation parameters 5-5
configuration parameters 5-5
model parameters 3-6
setting up
build folder 5-4
system 1-3
signal concepts 2-10
signal processing model
building 3-2
signals
definition 2-10
simulation
of system behavior 2-2
simulations
accelerating 2-24
stopping 2-24
Simulink Library Browser 2-5
solver algorithms
selecting 5-5
Solver parameter 2-24
spectrogram
creating 6-12
of speech signal 6-12
viewing 6-18
speed

Index-3

Index

improving 2-24
startup file 2-24
Statistical Functions demo 2-19
statistical operations 2-19
Stop time parameter 2-24
stopping a simulation 2-24
suppressing

tout vector 2-25
system

setup 1-3
system behavior

modeling 2-2

T

target configurations
selecting 5-6
targets
code generation 5-6
time-step vector
saving to workspace 2-25
tout vector
suppressing 2-25
tunable parameters 2-14
definition 2-14

Index-4

\"

variable-step solver
setting 2-24

viewing
coefficients of adaptive filter 4-19
documentation 1-12
generated code 5-11
power spectrum of speech signal 6-9
spectrogram of speech signal 6-18

W

Waterfall Scope block 2-2
Web
demos 1-10
documentation 1-12
workspace
suppressing output to 2-25

Y

yout
suppressing 2-25

	toc
	Introduction
	Product Overview
	System Setup
	Installation
	Installing the Signal Processing Blockset Software
	Installing Online Documentation

	Required Products
	Related Products

	Product Demos
	Demos in the Help Browser
	Demos on the Web
	Demos on MATLAB Central

	Working with the Documentation
	Viewing the Documentation
	Documentation in the Help Browser
	Documentation on the Web

	Printing the Documentation
	Using This Guide
	Expected Background
	What Chapters Should I Read?

	Concepts, Terminology, and Feature Overview
	Sample Model and Block Libraries
	Modeling System Behavior
	Signal Processing Blockset Blocks
	Accessing Blocks Directly
	Accessing Blocks with the Library Browser

	Key Blockset Concepts
	Signals
	Sample Time
	State
	Sample-Based Signals
	Frame-Based Signals
	Tunable Parameters

	Signal Processing Blockset Product Features
	Frame-Based Operations
	Multirate Processing
	Fixed-Point Support
	Real-Time Code Generation
	Adaptive and Multirate Filtering
	Quantization
	Statistical Operations
	Linear Algebra
	Parametric Estimation
	Matrix Support
	Data Type Support

	Configuring the Simulink Environment for Signal Processing Model
	Using dspstartup.m
	Settings in dspstartup.m

	Signal Processing Models
	Creating a Block Diagram
	Setting the Model Parameters
	Running the Model
	Modifying Your Model

	Filters
	Digital Filters
	Designing a Digital Filter
	Adding a Digital Filter to Your Model

	Adaptive Filters
	Designing an Adaptive Filter
	Adding the Adaptive Filter to Your Model
	Viewing the Coefficients of Your Adaptive Filter

	Code Generation
	Understanding Code Generation
	Code Generation with the Real-Time Workshop Product
	Shared Library Dependencies

	Highly Optimized Generated ANSI C Code

	Generating Code
	Setting Up the Build Folder
	Setting Configuration Parameters
	Selecting a Solver Algorithm
	Selecting a Target Configuration
	Controlling Other Code Generation Options

	Generating Code
	Viewing the Generated Code

	Frequency Domain Signals
	Power Spectrum Estimates
	Creating the Block Diagram
	Setting the Model Parameters
	Viewing the Power Spectrum Estimates

	Spectrograms
	Modifying the Block Diagram
	Setting the Model Parameters
	Viewing the Spectrogram of the Speech Signal

	Index

	tables
	Supported Data Types

